Suppr超能文献

使用双能材料分解的计算机断层扫描无分割X射线能谱估计

Segmentation-free x-ray energy spectrum estimation for computed tomography using dual-energy material decomposition.

作者信息

Zhao Wei, Xing Lei, Zhang Qiude, Xie Qingguo, Niu Tianye

机构信息

Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan, China.

Stanford University, Department of Radiation Oncology, Stanford, California, United States.

出版信息

J Med Imaging (Bellingham). 2017 Apr;4(2):023506. doi: 10.1117/1.JMI.4.2.023506. Epub 2017 Jun 30.

Abstract

An x-ray energy spectrum plays an essential role in computed tomography (CT) imaging and related tasks. Because of the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and usually suffer from various limitations. In this study, we aim to provide a segmentation-free, indirect transmission measurement-based energy spectrum estimation method using dual-energy material decomposition. The general principle of this method is to minimize the quadratic error between the polychromatic forward projection and the raw projection to calibrate a set of unknown weights, which are used to express the unknown spectrum together with a set of model spectra. The polychromatic forward projection is performed using material-specific images, which are obtained using dual-energy material decomposition. The algorithm was evaluated using numerical simulations, experimental phantom data, and realistic patient data. The results show that the estimated spectrum matches the reference spectrum quite well and the method is robust. Extensive studies suggest that the method provides an accurate estimate of the CT spectrum without dedicated physical phantom and prolonged workflow. This paper may be attractive for CT dose calculation, artifacts reduction, polychromatic image reconstruction, and other spectrum-involved CT applications.

摘要

X射线能谱在计算机断层扫描(CT)成像及相关任务中起着至关重要的作用。由于临床CT扫描仪的光子通量很高,大多数能谱估计方法都是间接的,并且通常存在各种局限性。在本研究中,我们旨在提供一种基于双能材料分解的、无分割的间接透射测量能谱估计方法。该方法的一般原理是最小化多色前向投影与原始投影之间的二次误差,以校准一组未知权重,这些权重与一组模型能谱一起用于表示未知能谱。多色前向投影使用特定材料图像进行,该图像通过双能材料分解获得。使用数值模拟、实验体模数据和真实患者数据对该算法进行了评估。结果表明,估计的能谱与参考能谱匹配良好,且该方法具有鲁棒性。大量研究表明,该方法无需专用物理体模和冗长的工作流程即可准确估计CT能谱。本文可能对CT剂量计算、伪影减少、多色图像重建以及其他涉及能谱的CT应用具有吸引力。

相似文献

引用本文的文献

1
Image-domain Material Decomposition for Spectral CT using a Generalized Dictionary Learning.使用广义字典学习的光谱CT图像域材料分解
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):537-547. doi: 10.1109/trpms.2020.2997880. Epub 2020 May 26.

本文引用的文献

2
A model of tungsten anode x-ray spectra.钨阳极X射线光谱模型。
Med Phys. 2016 Aug;43(8):4655. doi: 10.1118/1.4955120.
8
An extended algebraic reconstruction technique (E-ART) for dual spectral CT.双能谱 CT 的扩展代数重建技术(E-ART)。
IEEE Trans Med Imaging. 2015 Mar;34(3):761-8. doi: 10.1109/TMI.2014.2373396. Epub 2014 Nov 24.
9
United iterative reconstruction for spectral computed tomography.光谱 CT 的联合迭代重建。
IEEE Trans Med Imaging. 2015 Mar;34(3):769-78. doi: 10.1109/TMI.2014.2339497. Epub 2014 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验