Suppr超能文献

齐尔-尼尔森痰涂片显微镜图像数据库:一个有助于结核病诊断中杆菌自动检测的资源。

Ziehl-Neelsen sputum smear microscopy image database: a resource to facilitate automated bacilli detection for tuberculosis diagnosis.

作者信息

Shah Mohammad Imran, Mishra Smriti, Yadav Vinod Kumar, Chauhan Arun, Sarkar Malay, Sharma Sudarshan K, Rout Chittaranjan

机构信息

Jaypee University of Information Technology, Department of Biotechnology and Bioinformatics, Waknaghat, Himachal Pradesh, India.

Indira Gandhi Medical College, Department of Pulmonary Medicine, Shimla, India.

出版信息

J Med Imaging (Bellingham). 2017 Apr;4(2):027503. doi: 10.1117/1.JMI.4.2.027503. Epub 2017 Jun 30.

Abstract

Ziehl-Neelsen stained microscopy is a crucial bacteriological test for tuberculosis detection, but its sensitivity is poor. According to the World Health Organization (WHO) recommendation, 300 viewfields should be analyzed to augment sensitivity, but only a few viewfields are examined due to patient load. Therefore, tuberculosis diagnosis through automated capture of the focused image (autofocusing), stitching of viewfields to form mosaics (autostitching), and automatic bacilli segmentation (grading) can significantly improve the sensitivity. However, the lack of unified datasets impedes the development of robust algorithms in these three domains. Therefore, the Ziehl-Neelsen sputum smear microscopy image database (ZNSM iDB) has been developed, and is freely available. This database contains seven categories of diverse datasets acquired from three different bright-field microscopes. Datasets related to autofocusing, autostitching, and manually segmenting bacilli can be used for developing algorithms, whereas the other four datasets are provided to streamline the sensitivity and specificity. All three categories of datasets were validated using different automated algorithms. As images available in this database have distinctive presentations with high noise and artifacts, this referral resource can also be used for the validation of robust detection algorithms. The ZNSM-iDB also assists for the development of methods in automated microscopy.

摘要

萋-尼染色显微镜检查是检测结核病的一项关键细菌学检测方法,但其灵敏度较低。根据世界卫生组织(WHO)的建议,应分析300个视野以提高灵敏度,但由于患者数量众多,实际仅检查了少数视野。因此,通过自动捕获聚焦图像(自动对焦)、拼接视野以形成全景图(自动拼接)以及自动分割杆菌(分级)来诊断结核病,可显著提高灵敏度。然而,缺乏统一的数据集阻碍了这三个领域中强大算法的开发。因此,已经开发了萋-尼痰涂片显微镜图像数据库(ZNSM iDB),并且可以免费获取。该数据库包含从三种不同明场显微镜获取的七类不同数据集。与自动对焦、自动拼接以及手动分割杆菌相关的数据集可用于开发算法,而其他四类数据集则用于优化灵敏度和特异性。所有三类数据集均使用不同的自动化算法进行了验证。由于该数据库中的图像具有独特的呈现方式,且噪声和伪影较高,因此该参考资源也可用于验证强大的检测算法。ZNSM-iDB还有助于自动显微镜方法的开发。

相似文献

7
Automatic bright-field smear microscopy for diagnosis of pulmonary tuberculosis.自动明场抹片显微镜检查用于肺结核诊断。
Comput Biol Med. 2024 Apr;172:108167. doi: 10.1016/j.compbiomed.2024.108167. Epub 2024 Feb 29.

引用本文的文献

2
Evolution of Laboratory Diagnosis of Tuberculosis.结核病实验室诊断的演变
Clin Pract. 2024 Feb 23;14(2):388-416. doi: 10.3390/clinpract14020030.
4
infection of the wrist joint: A current concepts review.腕关节感染:当前概念综述
J Clin Orthop Trauma. 2023 Sep 28;44:102257. doi: 10.1016/j.jcot.2023.102257. eCollection 2023 Sep.

本文引用的文献

2
Region sampling for robust and rapid autofocus in microscope.用于显微镜中稳健快速自动对焦的区域采样
Microsc Res Tech. 2015 May;78(5):382-90. doi: 10.1002/jemt.22484. Epub 2015 Mar 5.
6
A method for fast automated microscope image stitching.一种快速自动显微镜图像拼接方法。
Micron. 2013 May;48:17-25. doi: 10.1016/j.micron.2013.01.006. Epub 2013 Feb 14.
7
Feature-based image patch approximation for lung tissue classification.基于特征的图像补丁逼近用于肺组织分类。
IEEE Trans Med Imaging. 2013 Apr;32(4):797-808. doi: 10.1109/TMI.2013.2241448. Epub 2013 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验