Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , BMC Box 596, Uppsala S-751 24, Sweden.
Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich , Jülich 52425, Germany.
J Am Chem Soc. 2017 Aug 2;139(30):10514-10525. doi: 10.1021/jacs.7b05576. Epub 2017 Jul 19.
Triosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational change, which helps position the side chains of two key hydrophobic residues (I170 and L230), over the carboxylate side chain of E165. This is critical both for creating a hydrophobic pocket for the catalytic base and for maintaining correct active site architecture. Truncation of these residues to alanine causes significant falloffs in TIM's catalytic activity, but experiments have failed to provide a full description of the action of this clamp in promoting substrate deprotonation. We perform here detailed empirical valence bond calculations of the TIM-catalyzed deprotonation of DHAP and GAP by both wild-type TIM and its I170A, L230A, and I170A/L230A mutants, obtaining exceptional quantitative agreement with experiment. Our calculations provide a linear free energy relationship, with slope 0.8, between the activation barriers and Gibbs free energies for these TIM-catalyzed reactions. We conclude that these clamping side chains minimize the Gibbs free energy for substrate deprotonation, and that the effects on reaction driving force are largely expressed at the transition state for proton transfer. Our combined analysis of previous experimental and current computational results allows us to provide an overview of the breakdown of ground-state and transition state effects in enzyme catalysis in unprecedented detail, providing a molecular description of the operation of a hydrophobic clamp in triosephosphate isomerase.
磷酸丙糖异构酶(TIM)是二羟丙酮磷酸(DHAP)到 D-甘油醛 3-磷酸(GAP)的可逆异构化的高效催化剂,通过 E165 的广义碱催化。从历史上看,这种酶一直是理解生物催化基本原理的极其重要的模型系统。TIM 通过能量要求高的构象变化而被激活,这有助于将两个关键疏水性残基(I170 和 L230)的侧链定位在 E165 的羧酸盐侧链上。这对于创建催化碱的疏水性口袋和维持正确的活性位点结构都是至关重要的。将这些残基截断为丙氨酸会导致 TIM 的催化活性显著下降,但实验未能充分描述该夹子在促进底物去质子化方面的作用。我们在这里对 TIM 催化的 DHAP 和 GAP 的去质子化进行了详细的经验价键计算,包括野生型 TIM 及其 I170A、L230A 和 I170A/L230A 突变体,与实验结果取得了出色的定量一致性。我们的计算为 TIM 催化反应的活化能和吉布斯自由能之间提供了一个线性自由能关系,斜率为 0.8。我们得出结论,这些夹链残基使底物去质子化的吉布斯自由能最小化,并且对反应驱动力的影响主要在质子转移的过渡态中表现出来。我们对以前的实验和当前的计算结果的综合分析使我们能够以前所未有的细节全面了解酶催化中基态和过渡态效应的分解,并提供了磷酸丙糖异构酶中疏水性夹的操作的分子描述。