Suppr超能文献

与半胱氨酸双加氧酶相关的钴配合物对 O 可逆结合的光谱和计算研究。

Spectroscopic and computational studies of reversible O binding by a cobalt complex of relevance to cysteine dioxygenase.

机构信息

Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, USA.

出版信息

Dalton Trans. 2017 Oct 10;46(39):13229-13241. doi: 10.1039/c7dt01600j.

Abstract

The substitution of non-native metal ions into metalloenzyme active sites is a common strategy for gaining insights into enzymatic structure and function. For some nonheme iron dioxygenases, replacement of the Fe(ii) center with a redox-active, divalent transition metal (e.g., Mn, Co, Ni, Cu) gives rise to an enzyme with equal or greater activity than the wild-type enzyme. In this manuscript, we apply this metal-substitution approach to synthetic models of the enzyme cysteine dioxygenase (CDO). CDO is a nonheme iron dioxygenase that initiates the catabolism of l-cysteine by converting this amino acid to the corresponding sulfinic acid. Two mononuclear Co(ii) complexes (3 and 4) have been prepared with the general formula [Co(Tp)(CysOEt)] (R = Ph (3) or Me (4); Tp = hydrotris(pyrazol-1-yl)borate substituted with R-groups at the 3- and 5-positions, and CysOEt is the anion of l-cysteine ethyl ester). These Co(ii) complexes mimic the active-site structure of substrate-bound CDO and are analogous to functional iron-based CDO models previously reported in the literature. Characterization with X-ray crystallography and/or H NMR spectroscopy revealed that 3 and 4 possess five-coordinate structures featuring facially-coordinating Tp and S,N-bidentate CysOEt ligands. The electronic properties of these high-spin (S = 3/2) complexes were interrogated with UV-visible absorption and X-band electron paramagnetic resonance (EPR) spectroscopies. The air-stable nature of complex 3 replicates the inactivity of cobalt-substituted CDO. In contrast, complex 4 reversibly binds O at reduced temperatures to yield an orange chromophore (4-O). Spectroscopic (EPR, resonance Raman) and computational (density functional theory, DFT) analyses indicate that 4-O is a S = 1/2 species featuring a low-spin Co(iii) center bound to an end-on (η) superoxo ligand. DFT calculations were used to evaluate the energetics of key steps in the reaction mechanism. Collectively, these results have elucidated the role of electronic factors (e.g., spin-state, d-electron count, metal-ligand covalency) in facilitating O activation and S-dioxygenation in CDO and related models.

摘要

将非天然金属离子替代金属酶活性位点是深入了解酶结构和功能的常用策略。对于一些非血红素铁双加氧酶,用氧化还原活性的二价过渡金属(例如 Mn、Co、Ni、Cu)替代 Fe(ii)中心会产生比野生型酶具有同等或更高活性的酶。在本文中,我们将这种金属取代方法应用于半胱氨酸双加氧酶(CDO)的合成模型。CDO 是一种非血红素铁双加氧酶,通过将这种氨基酸转化为相应的亚磺酸来启动 l-半胱氨酸的分解代谢。已经制备了两种单核 Co(ii)配合物(3 和 4),它们具有通式 [Co(Tp)(CysOEt)](R = Ph(3)或 Me(4);Tp = 三(吡唑-1-基)硼酸盐,在 3-和 5-位用 R-基团取代,CysOEt 是 l-半胱氨酸乙酯的阴离子)。这些 Co(ii)配合物模拟了底物结合 CDO 的活性位点结构,并且与文献中先前报道的功能性基于铁的 CDO 模型类似。X 射线晶体学和/或 H NMR 光谱学的表征表明,3 和 4 具有五角配位结构,具有面配位 Tp 和 S,N-双齿 CysOEt 配体。通过紫外-可见吸收和 X 波段电子顺磁共振(EPR)光谱学研究了这些高自旋(S = 3/2)配合物的电子性质。配合物 3 的空气稳定性质复制了钴取代 CDO 的无活性。相比之下,配合物 4 在低温下可逆地结合 O 以产生橙色生色团(4-O)。光谱(EPR、共振拉曼)和计算(密度泛函理论,DFT)分析表明,4-O 是一种 S = 1/2 物种,具有与端到端(η)过氧配位的低自旋 Co(iii)中心。DFT 计算用于评估反应机制中关键步骤的能量学。总的来说,这些结果阐明了电子因素(例如,自旋态、d 电子数、金属-配体共价键)在促进 CDO 和相关模型中的 O 活化和 S-双加氧中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验