Suppr超能文献

可溶性腺苷酸环化酶抑制剂治疗后通过眼压测量法和直接插管进行的眼压差异测量

Differential Intraocular Pressure Measurements by Tonometry and Direct Cannulation After Treatment with Soluble Adenylyl Cyclase Inhibitors.

作者信息

Gandhi Jarel K, Roy Chowdhury Uttio, Manzar Zahid, Buck Jochen, Levin Lonny R, Fautsch Michael P, Marmorstein Alan D

机构信息

1 Department of Ophthalmology, Mayo Clinic , Rochester, Minnesota.

2 Department of Pharmacology, Weill Cornell Medical College , New York, New York.

出版信息

J Ocul Pharmacol Ther. 2017 Oct;33(8):574-581. doi: 10.1089/jop.2017.0027. Epub 2017 Jul 7.

Abstract

PURPOSE

To validate the increase in intraocular pressure (IOP) caused by soluble adenylyl cyclase (sAC) inhibitors and determine reasons behind variation in IOP measurements performed by tonometry.

METHODS

C57BL/6J mice were administered DMSO solubilized sAC inhibitors (KH7 or LRE-1) by intraperitoneal injection. Two hours post-treatment, mice were anesthetized with avertin or ketamine/xylazine/acepromazine (KXA). IOP was measured by a rebound tonometer or direct cannulation of the anterior chamber. Spectral-domain optical coherence tomography was used to measure anterior chamber depth and corneal thickness in live mice. Outflow facility was measured in perfused, enucleated mouse eyes.

RESULTS

Compared with DMSO controls, KH7 treatment caused an increased IOP in avertin- and KXA-anesthetized mice when measured by direct cannulation [avertin: 14.4 ± 2.1 mmHg vs. 11.1 ± 1.0 mmHg (P = 0.003); KXA: 14.4 ± 1.0 mmHg vs. 11.3 ± 0.8 mmHg (P < 0.001)] and tonometry [avertin: 10.8 ± 1.4 mmHg vs. 7.4 ± 0.6 mmHg (P < 0.001); KXA: 11.9 ± 0.9 mmHg vs. 10.3 ± 1.7 mmHg (P = 0.283)]. However, treatment with KH7 in nonanesthetized mice showed a significant decrease in IOP measured by tonometry and compared with DMSO-treated animals [13.1 ± 2.6 mmHg vs. 15.6 ± 0.5 mmHg (P = 0.003)]. Both KH7- and DMSO-treated groups anesthetized with avertin showed increased corneal thickness, whereas KH7-treated mice anesthetized with KXA exhibited a shallower anterior chamber compared with untreated mice. KH7 decreased outflow facility by 85.1% in nonanesthetized, enucleated eyes (P < 0.003).

CONCLUSIONS

Systemically administered DMSO and anesthesia have significant effects on anterior chamber characteristics, resulting in altered IOP readings measured by tonometry. In the presence of DMSO and anesthesia, tonometry IOP readings should be confirmed with direct cannulation.

摘要

目的

验证可溶性腺苷酸环化酶(sAC)抑制剂引起的眼压(IOP)升高,并确定眼压计测量IOP变化背后的原因。

方法

通过腹腔注射向C57BL/6J小鼠给予二甲基亚砜(DMSO)溶解的sAC抑制剂(KH7或LRE-1)。治疗后两小时,用阿佛丁或氯胺酮/赛拉嗪/乙酰丙嗪(KXA)麻醉小鼠。通过回弹眼压计或直接穿刺前房测量IOP。使用光谱域光学相干断层扫描测量活体小鼠的前房深度和角膜厚度。在灌注的摘除眼球中测量房水流出率。

结果

与DMSO对照组相比,通过直接穿刺测量时,KH7治疗使阿佛丁和KXA麻醉的小鼠眼压升高[阿佛丁:14.4±2.1 mmHg对11.1±1.0 mmHg(P = 0.003);KXA:14.4±1.0 mmHg对11.3±0.8 mmHg(P < 0.001)],眼压计测量结果也显示升高[阿佛丁:10.8±1.4 mmHg对7.4±0.6 mmHg(P < 0.001);KXA:11.9±0.9 mmHg对10.3±1.7 mmHg(P = 0.283)]。然而,在未麻醉的小鼠中用KH7治疗时,眼压计测量的IOP与DMSO处理的动物相比显著降低[13.1±2.6 mmHg对15.6±0.5 mmHg(P = 0.003)]。用阿佛丁麻醉的KH7和DMSO处理组均显示角膜厚度增加,而用KXA麻醉的KH7处理小鼠与未处理小鼠相比前房较浅。在未麻醉的摘除眼球中,KH7使房水流出率降低85.1%(P < 0.003)。

结论

全身给予DMSO和麻醉对前房特征有显著影响,导致眼压计测量的IOP读数改变。在存在DMSO和麻醉的情况下,眼压计的IOP读数应用直接穿刺进行确认。

相似文献

3
Comparison of invasive and non-invasive tonometry in the mouse.
Exp Eye Res. 2006 Jun;82(6):1094-9. doi: 10.1016/j.exer.2005.12.001. Epub 2006 Feb 7.
4
Effects of three commonly used anesthetics on intraocular pressure in mouse.
Curr Eye Res. 2014 Apr;39(4):365-9. doi: 10.3109/02713683.2013.845224. Epub 2013 Nov 11.
5
Assessing intraocular pressure by rebound tonometer in rats with an air-filled anterior chamber.
Jpn J Ophthalmol. 2008 Nov-Dec;52(6):500-503. doi: 10.1007/s10384-008-0591-1. Epub 2008 Dec 17.
7
Monitoring intraocular pressure changes after intravitreal Ranibizumab injection using rebound tonometry.
Ophthalmic Physiol Opt. 2014 Jul;34(4):438-44. doi: 10.1111/opo.12134. Epub 2014 Apr 14.
9
Method for the noninvasive measurement of intraocular pressure in mice.
Invest Ophthalmol Vis Sci. 2003 Mar;44(3):1138-41. doi: 10.1167/iovs.02-0553.
10
Intraocular pressure measurement in mice: a comparison between Goldmann and rebound tonometry.
Eye (Lond). 2007 Sep;21(9):1202-9. doi: 10.1038/sj.eye.6702576. Epub 2006 Sep 1.

引用本文的文献

1
Carbonic Anhydrase Inhibitor Modulation of Intraocular Pressure Is Independent of Soluble Adenylyl Cyclase.
J Ocul Pharmacol Ther. 2023 Jun;39(5):317-323. doi: 10.1089/jop.2022.0180. Epub 2023 Apr 25.
2
Diurnal Variation and Effects of Dilation and Sedation on Intraocular Pressure in Infant Rhesus Monkeys.
Curr Eye Res. 2023 Mar;48(3):289-296. doi: 10.1080/02713683.2022.2141782. Epub 2022 Nov 10.
4
Assessing potency and binding kinetics of soluble adenylyl cyclase (sAC) inhibitors to maximize therapeutic potential.
Front Physiol. 2022 Sep 28;13:1013845. doi: 10.3389/fphys.2022.1013845. eCollection 2022.
5
Strategies to safely target widely expressed soluble adenylyl cyclase for contraception.
Front Pharmacol. 2022 Aug 25;13:953903. doi: 10.3389/fphar.2022.953903. eCollection 2022.
6
Methodological Approach to Improve Surgical Outcomes of a Pig Subretinal Implantation Model.
Transl Vis Sci Technol. 2022 Apr 1;11(4):24. doi: 10.1167/tvst.11.4.24.
8
Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase.
Interface Focus. 2021 Apr 6;11(2):20200034. doi: 10.1098/rsfs.2020.0034. Epub 2021 Feb 12.
10
Pharmacological modulation of the CO/HCO/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase.
Pharmacol Ther. 2018 Oct;190:173-186. doi: 10.1016/j.pharmthera.2018.05.008. Epub 2018 May 26.

本文引用的文献

1
Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase.
Nat Chem Biol. 2016 Oct;12(10):838-44. doi: 10.1038/nchembio.2151. Epub 2016 Aug 22.
2
ATP sensitive potassium channel openers: A new class of ocular hypotensive agents.
Exp Eye Res. 2017 May;158:85-93. doi: 10.1016/j.exer.2016.04.020. Epub 2016 Apr 26.
3
Ocular Hypotensive Effects of the ATP-Sensitive Potassium Channel Opener Cromakalim in Human and Murine Experimental Model Systems.
PLoS One. 2015 Nov 4;10(11):e0141783. doi: 10.1371/journal.pone.0141783. eCollection 2015.
4
Non-continuous measurement of intraocular pressure in laboratory animals.
Exp Eye Res. 2015 Dec;141:74-90. doi: 10.1016/j.exer.2015.04.018. Epub 2015 Apr 28.
5
Soluble adenylyl cyclase in the eye.
Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2579-83. doi: 10.1016/j.bbadis.2014.07.032. Epub 2014 Aug 6.
7
A novel rat model to study the role of intracranial pressure modulation on optic neuropathies.
PLoS One. 2013 Dec 18;8(12):e82151. doi: 10.1371/journal.pone.0082151. eCollection 2013.
8
Unexpected low-dose toxicity of the universal solvent DMSO.
FASEB J. 2014 Mar;28(3):1317-30. doi: 10.1096/fj.13-235440. Epub 2013 Dec 10.
9
Control of outflow resistance by soluble adenylyl cyclase.
J Ocul Pharmacol Ther. 2014 Mar-Apr;30(2-3):138-42. doi: 10.1089/jop.2013.0199. Epub 2013 Dec 9.
10
Nonpigmented ciliary epithelial cells respond to acetazolamide by a soluble adenylyl cyclase mechanism.
Invest Ophthalmol Vis Sci. 2014 Jan 9;55(1):187-97. doi: 10.1167/iovs.13-12717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验