Suppr超能文献

突触拟合神经元:通过模型反演进行关节复位

Synapse fits neuron: joint reduction by model inversion.

作者信息

van der Scheer H T, Doelman A

机构信息

Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA, Leiden, The Netherlands.

出版信息

Biol Cybern. 2017 Aug;111(3-4):309-334. doi: 10.1007/s00422-017-0722-1. Epub 2017 Jul 8.

Abstract

In this paper, we introduce a novel simplification method for dealing with physical systems that can be thought to consist of two subsystems connected in series, such as a neuron and a synapse. The aim of our method is to help find a simple, yet convincing model of the full cascade-connected system, assuming that a satisfactory model of one of the subsystems, e.g., the neuron, is already given. Our method allows us to validate a candidate model of the full cascade against data at a finer scale. In our main example, we apply our method to part of the squid's giant fiber system. We first postulate a simple, hypothetical model of cell-to-cell signaling based on the squid's escape response. Then, given a FitzHugh-type neuron model, we derive the verifiable model of the squid giant synapse that this hypothesis implies. We show that the derived synapse model accurately reproduces synaptic recordings, hence lending support to the postulated, simple model of cell-to-cell signaling, which thus, in turn, can be used as a basic building block for network models.

摘要

在本文中,我们介绍了一种新颖的简化方法,用于处理可被视为由两个串联连接的子系统组成的物理系统,例如神经元和突触。我们方法的目的是帮助找到一个简单却令人信服的全级联连接系统模型,假设其中一个子系统(例如神经元)的令人满意的模型已经给出。我们的方法使我们能够在更精细的尺度上针对数据验证全级联的候选模型。在我们的主要示例中,我们将我们的方法应用于鱿鱼巨纤维系统的一部分。我们首先基于鱿鱼的逃避反应假设一个简单的细胞间信号传导假设模型。然后,给定一个菲茨休类型的神经元模型,我们推导出该假设所隐含的鱿鱼巨突触的可验证模型。我们表明,推导得到的突触模型准确地再现了突触记录,从而为所假设的简单细胞间信号传导模型提供了支持,进而该模型可作为网络模型的基本构建块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a1/5506247/4f3e15f5ba27/422_2017_722_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验