Suppr超能文献

使用额外生物学测量推断基因型与表型之间因果关系的方法比较。

A comparison of methods for inferring causal relationships between genotype and phenotype using additional biological measurements.

作者信息

Ainsworth Holly F, Shin So-Youn, Cordell Heather J

机构信息

Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom.

MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, United Kingdom.

出版信息

Genet Epidemiol. 2017 Nov;41(7):577-586. doi: 10.1002/gepi.22061. Epub 2017 Jul 10.

Abstract

Genome wide association studies (GWAS) have been very successful over the last decade at identifying genetic variants associated with disease phenotypes. However, interpretation of the results obtained can be challenging. Incorporation of further relevant biological measurements (e.g. 'omics' data) measured in the same individuals for whom we have genotype and phenotype data may help us to learn more about the mechanism and pathways through which causal genetic variants affect disease. We review various methods for causal inference that can be used for assessing the relationships between genetic variables, other biological measures, and phenotypic outcome, and present a simulation study assessing the performance of the methods under different conditions. In general, the methods we considered did well at inferring the causal structure for data simulated under simple scenarios. However, the presence of an unknown and unmeasured common environmental effect could lead to spurious inferences, with the methods we considered displaying varying degrees of robustness to this confounder. The use of causal inference techniques to integrate omics and GWAS data has the potential to improve biological understanding of the pathways leading to disease. Our study demonstrates the suitability of various methods for performing causal inference under several biologically plausible scenarios.

摘要

在过去十年中,全基因组关联研究(GWAS)在识别与疾病表型相关的基因变异方面非常成功。然而,对所得结果的解释可能具有挑战性。纳入在我们拥有基因型和表型数据的同一批个体中测量的进一步相关生物学测量值(例如“组学”数据),可能有助于我们更多地了解因果基因变异影响疾病的机制和途径。我们回顾了可用于评估基因变量、其他生物学测量值和表型结果之间关系的各种因果推断方法,并进行了一项模拟研究,评估这些方法在不同条件下的性能。总体而言,我们考虑的方法在推断简单场景下模拟数据的因果结构方面表现良好。然而,未知和未测量的共同环境效应的存在可能导致虚假推断,我们考虑的方法对这种混杂因素表现出不同程度的稳健性。使用因果推断技术整合组学和GWAS数据有可能改善对导致疾病途径的生物学理解。我们的研究证明了各种方法在几种生物学上合理的场景下进行因果推断的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c27e/5655748/20605995ca0e/GEPI-41-577-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验