Suppr超能文献

基于全基因组关联研究汇总统计数据的孟德尔随机化方法因果推断的基准测试。

Benchmarking Mendelian randomization methods for causal inference using genome-wide association study summary statistics.

机构信息

School of Mathematical Sciences, Institute of Statistical Sciences, Shenzhen University, Shenzhen 518060, China; Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China; Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China.

Department of Biostatistics, City University of Hong Kong, Hong Kong, China.

出版信息

Am J Hum Genet. 2024 Aug 8;111(8):1717-1735. doi: 10.1016/j.ajhg.2024.06.016. Epub 2024 Jul 25.

Abstract

Mendelian randomization (MR), which utilizes genetic variants as instrumental variables (IVs), has gained popularity as a method for causal inference between phenotypes using genetic data. While efforts have been made to relax IV assumptions and develop new methods for causal inference in the presence of invalid IVs due to confounding, the reliability of MR methods in real-world applications remains uncertain. Instead of using simulated datasets, we conducted a benchmark study evaluating 16 two-sample summary-level MR methods using real-world genetic datasets to provide guidelines for the best practices. Our study focused on the following crucial aspects: type I error control in the presence of various confounding scenarios (e.g., population stratification, pleiotropy, and family-level confounders like assortative mating), the accuracy of causal effect estimates, replicability, and power. By comprehensively evaluating the performance of compared methods over one thousand exposure-outcome trait pairs, our study not only provides valuable insights into the performance and limitations of the compared methods but also offers practical guidance for researchers to choose appropriate MR methods for causal inference.

摘要

孟德尔随机化(Mendelian randomization,MR)利用遗传变异作为工具变量(instrumental variables,IVs),已成为利用遗传数据进行表型间因果推断的一种方法。虽然已经努力放宽 IV 假设,并开发了在存在因混杂而无效的 IV 时进行因果推断的新方法,但 MR 方法在实际应用中的可靠性仍不确定。我们没有使用模拟数据集,而是进行了基准研究,使用真实的遗传数据集评估了 16 种两样本汇总水平的 MR 方法,为最佳实践提供了指导。我们的研究重点关注以下关键方面:在存在各种混杂情况(例如群体分层、多效性以及像近亲交配这样的家族水平混杂因素)时的Ⅰ型错误控制、因果效应估计的准确性、可重复性和功效。通过对一千多个暴露-结局性状对进行比较方法的综合评估,我们的研究不仅深入了解了比较方法的性能和局限性,还为研究人员提供了实用的指导,以选择适当的 MR 方法进行因果推断。

相似文献

3
Mendelian Randomization.孟德尔随机化
Methods Mol Biol. 2017;1666:581-628. doi: 10.1007/978-1-4939-7274-6_29.

引用本文的文献

4
Expectations for papers performing Mendelian randomization analyses.对进行孟德尔随机化分析的论文的期望。
PLoS Genet. 2025 Jul 17;21(7):e1011767. doi: 10.1371/journal.pgen.1011767. eCollection 2025 Jul.

本文引用的文献

1
Mendelian randomization.孟德尔随机化
Nat Rev Methods Primers. 2022 Feb 10;2. doi: 10.1038/s43586-021-00092-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验