Suppr超能文献

正确命名潜伏期分析中的一个盲点。

A blind spot in correct naming latency analyses.

作者信息

Oppenheim Gary M

机构信息

a Bangor University , Bangor , Gwynedd , UK.

b Rice University , Houston , TX , USA.

出版信息

Cogn Neuropsychol. 2017 Feb-Mar;34(1-2):33-41. doi: 10.1080/02643294.2017.1338563.

Abstract

Speech errors and naming latencies provide two complementary sets of behavioural data for understanding language production processes. A recent analytical trend-applied to intact and impaired production alike-highlights a link between specific features of correct picture naming latency distributions and the retrieval processes thought to underlie them. Although chronometric approaches to language production typically consider correct response times in isolation, adequately accounting for their distributions in error-prone situations requires also considering the errors that sometimes censor them. In this paper, I illustrate by simulation how excluding incorrect word retrievals predictably alters observed distributions of correct naming latencies. To the extent that naming errors impose a stochastic deadline on successful production, their censoring should tend to reduce the mean, variance, and skew of observed latencies for correct responses, relative to the uncensored underlying distribution.

摘要

言语错误和命名潜伏期为理解语言生成过程提供了两组互补的行为数据。最近一种分析趋势——同样适用于完整和受损的语言生成——强调了正确图片命名潜伏期分布的特定特征与被认为是其基础的检索过程之间的联系。尽管语言生成的计时方法通常单独考虑正确的反应时间,但要在容易出错的情况下充分考虑它们的分布,还需要考虑有时会审查这些反应时间的错误。在本文中,我通过模拟说明排除不正确的单词检索如何可预测地改变观察到的正确命名潜伏期分布。就命名错误对成功生成施加随机截止期限而言,相对于未审查的基础分布,对它们的审查应该倾向于减少正确反应的观察潜伏期的均值、方差和偏度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验