Bissinger Oliver, Götz Carolin, Wolff Klaus-Dietrich, Hapfelmeier Alexander, Prodinger Peter Michael, Tischer Thomas
Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
Institute of Medical Statistics and Epidemiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
J Orthop Surg Res. 2017 Jul 11;12(1):108. doi: 10.1186/s13018-017-0609-9.
A high percentage of closed femur fractures have slight comminution. Using micro-CT (μCT), multiple fragment segmentation is much more difficult than segmentation of unfractured or osteotomied bone. Manual or semi-automated segmentation has been performed to date. However, such segmentation is extremely laborious, time-consuming and error-prone. Our aim was to therefore apply a fully automated segmentation algorithm to determine μCT parameters and examine their association with biomechanics.
The femura of 64 rats taken after randomised inhibitory or neutral medication, in terms of the effect on fracture healing, and controls were closed fractured after a Kirschner wire was inserted. After 21 days, μCT and biomechanical parameters were determined by a fully automated method and correlated (Pearson's correlation).
The fully automated segmentation algorithm automatically detected bone and simultaneously separated cortical bone from callus without requiring ROI selection for each single bony structure. We found an association of structural callus parameters obtained by μCT to the biomechanical properties. However, results were only explicable by additionally considering the callus location.
A large number of slightly comminuted fractures in combination with therapies that influence the callus qualitatively and/or quantitatively considerably affects the association between μCT and biomechanics. In the future, contrast-enhanced μCT imaging of the callus cartilage might provide more information to improve the non-destructive and non-invasive prediction of callus mechanical properties. As studies evaluating such important drugs increase, fully automated segmentation appears to be clinically important.
相当大比例的闭合性股骨骨折存在轻微粉碎。使用微型计算机断层扫描(μCT)时,多个骨折碎片的分割比未骨折或截骨的骨骼分割困难得多。迄今为止,一直采用手动或半自动分割方法。然而,这种分割极其费力、耗时且容易出错。因此,我们的目的是应用一种全自动分割算法来确定μCT参数,并研究它们与生物力学的关系。
选取64只大鼠的股骨,随机给予抑制性或中性药物以观察其对骨折愈合的影响,之后插入克氏针造成闭合性骨折。21天后,通过全自动方法测定μCT和生物力学参数,并进行相关性分析(皮尔逊相关性分析)。
全自动分割算法能自动检测骨骼,并同时将皮质骨与骨痂分离,无需为每个单一骨结构选择感兴趣区域(ROI)。我们发现通过μCT获得的结构性骨痂参数与生物力学特性之间存在关联。然而,只有在额外考虑骨痂位置的情况下,结果才具有可解释性。
大量轻微粉碎性骨折以及定性和/或定量影响骨痂的治疗方法,会极大地影响μCT与生物力学之间的关联。未来,骨痂软骨的对比增强μCT成像可能会提供更多信息,以改善对骨痂力学性能的无损和非侵入性预测。随着评估此类重要药物的研究增多,全自动分割在临床上似乎具有重要意义。