Gentourinary Program, Simon Cancer Center, Indiana University, Indianapolis, Indiana.
Department of Cellular and Molecular Biology, University at Buffalo, Roswell Park Cancer Institute, Buffalo, New York.
Clin Cancer Res. 2017 Sep 1;23(17):5187-5201. doi: 10.1158/1078-0432.CCR-17-0741. Epub 2017 Jul 11.
Recent advances in immunotherapy highlight the antitumor effects of immune checkpoint inhibition despite a relatively limited subset of patients receiving clinical benefit. The selective class I histone deacetylase inhibitor entinostat has been reported to have immunomodulatory activity including targeting of immune suppressor cells in the tumor microenvironment. Thus, we decided to assess whether entinostat could enhance anti-PD-1 treatment and investigate those alterations in the immunosuppressive tumor microenvironment that contribute to the combined antitumor activity.
We utilized syngeneic mouse models of lung (LLC) and renal cell (RENCA) carcinoma and assessed immune correlates, tumor growth, and survival following treatment with entinostat (5 or 10 mg/kg, p.o.) and a PD-1 inhibitor (10 and 20 mg/kg, s.c.).
Entinostat enhanced the antitumor effect of PD-1 inhibition in two syngeneic mouse tumor models by reducing tumor growth and increasing survival. Entinostat inhibited the immunosuppressive function of both polymorphonuclear (PMN)- and monocytic-myeloid derived suppressor cell (M-MDSC) populations. Analysis of MDSC response to entinostat revealed significantly reduced arginase-1, iNOS, and COX-2 levels, suggesting potential mechanisms for the altered function. We also observed significant alterations in cytokine/chemokine release in vivo with a shift toward a tumor-suppressive microenvironment.
Our results demonstrate that entinostat enhances the antitumor effect of PD-1 targeting through functional inhibition of MDSCs and a transition away from an immune-suppressive tumor microenvironment. These data provide a mechanistic rationale for the clinical testing and potential markers of response of this novel combination in solid tumor patients.
免疫疗法的最新进展强调了免疫检查点抑制的抗肿瘤作用,尽管只有相对有限的一部分患者从中获得临床获益。选择性 I 类组蛋白去乙酰化酶抑制剂恩替诺特已被报道具有免疫调节活性,包括针对肿瘤微环境中的免疫抑制细胞。因此,我们决定评估恩替诺特是否能增强抗 PD-1 治疗,并研究那些导致联合抗肿瘤活性的免疫抑制肿瘤微环境的改变。
我们利用肺(LLC)和肾细胞(RENCA)癌的同源小鼠模型,评估免疫相关性、肿瘤生长和在恩替诺特(5 或 10mg/kg,口服)和 PD-1 抑制剂(10 和 20mg/kg,皮下)治疗后的生存情况。
恩替诺特通过减少肿瘤生长和提高生存率,增强了两种同源小鼠肿瘤模型中 PD-1 抑制的抗肿瘤作用。恩替诺特抑制了多形核(PMN)和单核细胞来源的髓样抑制细胞(M-MDSC)群体的免疫抑制功能。对 MDSC 对恩替诺特反应的分析显示,精氨酸酶-1、iNOS 和 COX-2 水平显著降低,表明了改变功能的潜在机制。我们还观察到体内细胞因子/趋化因子释放的显著改变,向肿瘤抑制性微环境转变。
我们的结果表明,恩替诺特通过功能性抑制 MDSC 和从免疫抑制肿瘤微环境向肿瘤抑制性微环境的转变,增强了 PD-1 靶向治疗的抗肿瘤作用。这些数据为该新型联合疗法在实体瘤患者中的临床测试和潜在反应标志物提供了机制依据。