Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands;
Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8083-8088. doi: 10.1073/pnas.1703155114. Epub 2017 Jul 11.
The brain's remarkable capacity for language requires bidirectional interactions between functionally specialized brain regions. We used magnetoencephalography to investigate interregional interactions in the brain network for language while 102 participants were reading sentences. Using Granger causality analysis, we identified inferior frontal cortex and anterior temporal regions to receive widespread input and middle temporal regions to send widespread output. This fits well with the notion that these regions play a central role in language processing. Characterization of the functional topology of this network, using data-driven matrix factorization, which allowed for partitioning into a set of subnetworks, revealed directed connections at distinct frequencies of interaction. Connections originating from temporal regions peaked at alpha frequency, whereas connections originating from frontal and parietal regions peaked at beta frequency. These findings indicate that the information flow between language-relevant brain areas, which is required for linguistic processing, may depend on the contributions of distinct brain rhythms.
大脑在语言方面的卓越能力需要功能专门化的大脑区域之间的双向相互作用。我们使用脑磁图研究了 102 名参与者阅读句子时语言大脑网络的区域间相互作用。使用格兰杰因果分析,我们确定了额下回和颞前区域接收广泛的输入,以及中颞区域发送广泛的输出。这与这些区域在语言处理中起核心作用的观点相符。使用允许分区为一组子网的基于数据的矩阵因子分解对该网络的功能拓扑进行了特征描述,揭示了在不同相互作用频率下的有向连接。源自颞区的连接在 alpha 频率处达到峰值,而源自额区和顶区的连接在 beta 频率处达到峰值。这些发现表明,语言处理所需的语言相关脑区之间的信息流可能依赖于不同脑节律的贡献。