Suppr超能文献

自分组多网络聚类

Self-Grouping Multi-Network Clustering.

作者信息

Ni Jingchao, Cheng Wei, Fan Wei, Zhang Xiang

机构信息

Department of Electrical Engineering and Computer Science, Case Western Reserve University.

NEC Laboratories America.

出版信息

Proc IEEE Int Conf Data Min. 2016 Dec;2016:1119-1124. doi: 10.1109/ICDM.2016.0146. Epub 2017 Feb 2.

Abstract

Joint clustering of multiple networks has been shown to be more accurate than performing clustering on individual networks separately. Many multi-view and multi-domain network clustering methods have been developed for joint multi-network clustering. These methods typically assume there is a common clustering structure shared by all networks, and different networks can provide complementary information on this underlying clustering structure. However, this assumption is too strict to hold in many emerging real-life applications, where multiple networks have diverse data distributions. More popularly, the networks in consideration belong to different underlying groups. Only networks in the same underlying group share similar clustering structures. Better clustering performance can be achieved by considering such groups differently. As a result, an ideal method should be able to automatically detect network groups so that networks in the same group share a common clustering structure. To address this problem, we propose a novel method, ComClus, to simultaneously group and cluster multiple networks. ComClus treats node clusters as features of networks and uses them to differentiate different network groups. Network grouping and clustering are coupled and mutually enhanced during the learning process. Extensive experimental evaluation on a variety of synthetic and real datasets demonstrates the effectiveness of our method.

摘要

已证明对多个网络进行联合聚类比分别对单个网络进行聚类更准确。已经开发了许多多视图和多域网络聚类方法用于联合多网络聚类。这些方法通常假设所有网络共享一个共同的聚类结构,并且不同的网络可以提供关于这个潜在聚类结构的互补信息。然而,在许多新兴的实际应用中,这个假设过于严格而无法成立,在这些应用中多个网络具有不同的数据分布。更常见的情况是,所考虑的网络属于不同的潜在组。只有同一潜在组中的网络共享相似的聚类结构。通过区别对待这些组可以获得更好的聚类性能。因此,一种理想的方法应该能够自动检测网络组,以便同一组中的网络共享一个共同的聚类结构。为了解决这个问题,我们提出了一种新颖的方法ComClus,用于同时对多个网络进行分组和聚类。ComClus将节点聚类视为网络的特征,并使用它们来区分不同的网络组。在学习过程中,网络分组和聚类是耦合的且相互增强。对各种合成数据集和真实数据集进行的广泛实验评估证明了我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验