Department of the Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA (GSG).
Yale Law School, New Haven, CT, USA (GSG).
Med Decis Making. 2018 Feb;38(2):262-272. doi: 10.1177/0272989X17716431. Epub 2017 Jul 12.
Public health agencies suggest targeting "hotspots" to identify individuals with undetected HIV infection. However, definitions of hotspots vary. Little is known about how best to target mobile HIV testing resources.
We conducted a computer-based tournament to compare the yield of 4 algorithms for mobile HIV testing. Over 180 rounds of play, the algorithms selected 1 of 3 hypothetical zones, each with unknown prevalence of undiagnosed HIV, in which to conduct a fixed number of HIV tests. The algorithms were: 1) Thompson Sampling, an adaptive Bayesian search strategy; 2) Explore-then-Exploit, a strategy that initially draws comparable samples from all zones and then devotes all remaining rounds of play to HIV testing in whichever zone produced the highest observed yield; 3) Retrospection, a strategy using only base prevalence information; and; 4) Clairvoyance, a benchmarking strategy that employs perfect information about HIV prevalence in each zone.
Over 250 tournament runs, Thompson Sampling outperformed Explore-then-Exploit 66% of the time, identifying 15% more cases. Thompson Sampling's superiority persisted in a variety of circumstances examined in the sensitivity analysis. Case detection rates using Thompson Sampling were, on average, within 90% of the benchmark established by Clairvoyance. Retrospection was consistently the poorest performer.
We did not consider either selection bias (i.e., the correlation between infection status and the decision to obtain an HIV test) or the costs of relocation to another zone from one round of play to the next.
Adaptive methods like Thompson Sampling for mobile HIV testing are practical and effective, and may have advantages over other commonly used strategies.
公共卫生机构建议针对“热点”来识别未检出 HIV 感染的个体。然而,“热点”的定义各不相同。对于如何最佳利用移动 HIV 检测资源,我们知之甚少。
我们进行了一项基于计算机的锦标赛,以比较 4 种移动 HIV 检测算法的效果。在 180 多轮比赛中,算法从 3 个假设的区域中选择了 1 个,每个区域的未知未确诊 HIV 流行率都不同,在这些区域中进行固定数量的 HIV 检测。这些算法是:1)Thompson Sampling,一种自适应贝叶斯搜索策略;2)先探索后利用,一种从所有区域初始抽取可比样本,然后在哪个区域产生的观测收益最高就将所有剩余轮次的检测都集中在该区域的策略;3)回溯,一种仅使用基础流行率信息的策略;以及 4)透视,一种使用每个区域中 HIV 流行率的完美信息的基准策略。
在 250 多轮比赛中,Thompson Sampling 有 66%的时间优于 Explore-then-Exploit,发现的病例数增加了 15%。在敏感性分析中检查的各种情况下,Thompson Sampling 的优势都得以维持。使用 Thompson Sampling 的病例检出率平均在 Clairvoyance 确定的基准范围内的 90%以内。回溯始终是表现最差的策略。
我们没有考虑选择偏差(即感染状况与获得 HIV 检测的决策之间的相关性)或从一轮比赛到下一轮比赛迁移到另一个区域的成本。
像 Thompson Sampling 这样用于移动 HIV 检测的自适应方法是实用且有效的,并且可能比其他常用策略具有优势。