Suppr超能文献

贝叶斯自适应算法用于定位 HIV 移动检测服务。

Bayesian adaptive algorithms for locating HIV mobile testing services.

机构信息

Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA.

Independent Consultant, Yale School of Public Health, 60 College Street, New Haven, CT, USA.

出版信息

BMC Med. 2018 Sep 3;16(1):155. doi: 10.1186/s12916-018-1129-0.

Abstract

BACKGROUND

We have previously conducted computer-based tournaments to compare the yield of alternative approaches to deploying mobile HIV testing services in settings where the prevalence of undetected infection may be characterized by 'hotspots'. We report here on three refinements to our prior assessments and their implications for decision-making. Specifically, (1) enlarging the number of geographic zones; (2) including spatial correlation in the prevalence of undetected infection; and (3) evaluating a prospective search algorithm that accounts for such correlation.

METHODS

Building on our prior work, we used a simulation model to create a hypothetical city consisting of up to 100 contiguous geographic zones. Each zone was randomly assigned a prevalence of undetected HIV infection. We employed a user-defined weighting scheme to correlate infection levels between adjacent zones. Over 180 days, search algorithms selected a zone in which to conduct a fixed number of HIV tests. Algorithms were permitted to observe the results of their own prior testing activities and to use that information in choosing where to test in subsequent rounds. The algorithms were (1) Thompson sampling (TS), an adaptive Bayesian search strategy; (2) Besag York Mollié (BYM), a Bayesian hierarchical model; and (3) Clairvoyance, a benchmarking strategy with access to perfect information.

RESULTS

Over 250 tournament runs, BYM detected 65.3% (compared to 55.1% for TS) of the cases identified by Clairvoyance. BYM outperformed TS in all sensitivity analyses, except when there was a small number of zones (i.e., 16 zones in a 4 × 4 grid), wherein there was no significant difference in the yield of the two strategies. Though settings of no, low, medium, and high spatial correlation in the data were examined, differences in these levels did not have a significant effect on the relative performance of BYM versus TS.

CONCLUSIONS

BYM narrowly outperformed TS in our simulation, suggesting that small improvements in yield can be achieved by accounting for spatial correlation. However, the comparative simplicity with which TS can be implemented makes a field evaluation critical to understanding the practical value of either of these algorithms as an alternative to existing approaches for deploying HIV testing resources.

摘要

背景

我们之前曾进行过基于计算机的竞赛,以比较在流行率可能具有“热点”特征的情况下,替代方法部署移动艾滋病毒检测服务的效果。在此,我们报告了对我们之前评估的三个改进及其对决策的影响。具体而言,(1)扩大地理区域的数量;(2)将未检测到的感染流行率纳入空间相关性;(3)评估一种考虑到这种相关性的前瞻性搜索算法。

方法

基于我们之前的工作,我们使用模拟模型创建了一个由多达 100 个连续地理区域组成的假设城市。每个区域被随机分配未检测到的 HIV 感染流行率。我们采用用户定义的加权方案来关联相邻区域的感染水平。在 180 多天的时间里,搜索算法选择一个区域进行固定数量的 HIV 测试。算法被允许观察其自身先前测试活动的结果,并在随后的轮次中使用该信息选择在哪里进行测试。算法是(1)汤普森抽样(TS),一种自适应贝叶斯搜索策略;(2)Besag York Mollié(BYM),一种贝叶斯层次模型;(3) clairvoyance,一种具有访问完美信息的基准策略。

结果

在超过 250 次比赛中,BYM 检测到了 Clairvoyance 确定的病例的 65.3%(而 TS 为 55.1%)。BYM 在所有敏感性分析中均优于 TS,除了当区域数量较少(即,在 4x4 网格中有 16 个区域)时,两种策略的效果没有显著差异。虽然检查了数据中无、低、中和高空间相关性的设置,但这些水平的差异并没有对 BYM 与 TS 的相对性能产生显著影响。

结论

在我们的模拟中,BYM 略优于 TS,这表明通过考虑空间相关性,可以实现产量的微小提高。然而,TS 可以非常简单地实现,这使得现场评估对于理解这两种算法作为替代现有方法部署艾滋病毒检测资源的实际价值至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验