Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.
Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.
Nat Commun. 2017 Jul 13;8:16091. doi: 10.1038/ncomms16091.
GABA-ergic interneurons provide diverse inhibitions that are essential for the operation of neuronal circuits in the neocortex. However, the mechanisms that control the functional organization of neocortical interneurons remain largely unknown. Here we show that developmental origins influence fine-scale synapse formation and microcircuit assembly of neocortical interneurons. Spatially clustered neocortical interneurons originating from low-titre retrovirus-infected radial glial progenitors in the embryonic medial ganglionic eminence and preoptic area preferentially develop electrical, but not chemical, synapses with each other. This lineage-related electrical coupling forms predominantly between the same interneuron subtype over an extended postnatal period and across a range of distances, and promotes action potential generation and synchronous firing. Interestingly, this selective electrical coupling relates to a coordinated inhibitory chemical synapse formation between sparsely labelled interneurons in clusters and the same nearby excitatory neurons. These results suggest a link between the lineage relationship of neocortical interneurons and their precise functional organization.
GABA 能中间神经元提供了多种多样的抑制作用,这对于新皮层神经元回路的运作至关重要。然而,控制新皮层中间神经元功能组织的机制在很大程度上仍然未知。在这里,我们表明发育起源影响新皮层中间神经元的精细突触形成和微电路组装。起源于胚胎内侧神经节隆起和视前区低滴度逆转录病毒感染的放射状胶质祖细胞的空间聚类新皮层中间神经元优先彼此形成电突触,而不是化学突触。这种谱系相关的电偶联主要发生在同一中间神经元亚型之间,并在出生后的很长一段时间内跨越不同的距离,从而促进动作电位的产生和同步放电。有趣的是,这种选择性的电偶联与簇内稀疏标记的中间神经元和同一附近兴奋性神经元之间协调的抑制性化学突触形成有关。这些结果表明,新皮层中间神经元的谱系关系与其精确的功能组织之间存在联系。