Suppr超能文献

"为全球心理健康研究和实践开发文化敏感的情感量表:印度阿迪瓦西主观幸福感中的情绪平衡,而非命名的综合征"。

"Developing culturally sensitive affect scales for global mental health research and practice: Emotional balance, not named syndromes, in Indian Adivasi subjective well-being".

机构信息

Department of Anthropology, Colorado State University, USA.

Department of Sociology, Colorado State University, USA.

出版信息

Soc Sci Med. 2017 Aug;187:174-183. doi: 10.1016/j.socscimed.2017.06.037. Epub 2017 Jun 27.

Abstract

We present a perspective to analyze mental health without either a) imposing Western illness categories or b) adopting local or "native" categories of mental distress. Our approach takes as axiomatic only that locals within any culture share a cognitive and verbal lexicon of salient positive and negative emotional experiences, which an appropriate and repeatable set of ethnographic procedures can elicit. Our approach is provisionally agnostic with respect to either Western or native nosological categories, and instead focuses on persons' relative frequency of experiencing emotions. Putting this perspective into practice in India, our ethnographic fieldwork (2006-2014) and survey analysis (N = 219) resulted in a 40-item Positive and Negative Affect Scale (PANAS), which we used to assess the mental well-being of Indigenous persons (the tribal Sahariya) in the Indian states of Rajasthan and Madhya Pradesh. Generated via standard cognitive anthropological procedures that can be replicated elsewhere, measures such as this possess features of psychiatric scales favored by leaders in global mental health initiatives. Though not capturing locally named distress syndromes, our scale is nonetheless sensitive to local emotional experiences, frames of meaning, and "idioms of distress." By sharing traits of both global and also locally-derived diagnoses, approaches like ours can help identify synergies between them. For example, employing data reduction techniques such as factor analysis-where diagnostic and screening categories emerge inductively ex post facto from emotional symptom clusters, rather than being deduced or assigned a priori by either global mental health experts or locals themselves-reveals hidden overlaps between local wellness idioms and global ones. Practically speaking, our perspective, which assesses both emotional frailty and also potential sources of emotional resilience and balance, while eschewing all named illness categories, can be deployed in mental health initiatives in ways that minimize stigma and increase both the acceptability and validity of assessment instruments.

摘要

我们提出了一种视角来分析心理健康,既不(a)强加西方疾病类别,也不(b)采用当地或“本土”的精神困扰类别。我们的方法仅假定任何文化中的本地人都共享一个显著的积极和消极情绪体验的认知和言语词汇,而适当和可重复的一组民族志程序可以引出这些词汇。我们的方法对西方或本土的分类学类别持暂时不可知论,而是专注于人们体验情绪的相对频率。在印度,我们将这种观点付诸实践,我们的民族志实地调查(2006-2014 年)和调查分析(N=219)得出了一个 40 项的正负情感量表(PANAS),我们用它来评估印度拉贾斯坦邦和中央邦的土著人(部落萨哈里亚人)的心理健康。通过可以在其他地方复制的标准认知人类学程序生成的这种测量方法,具有全球心理健康倡议的领导者所青睐的精神科量表的特征。虽然我们的量表没有捕捉到当地命名的困扰综合征,但它仍然对当地的情感体验、意义框架和“困扰的习语”敏感。通过共享全球和本地衍生诊断方法的特征,我们这样的方法可以帮助识别它们之间的协同作用。例如,采用数据缩减技术,例如因素分析,其中诊断和筛查类别是从情感症状群中归纳性地、事后出现的,而不是由全球心理健康专家或当地人自己事先推断或分配的,这揭示了本地健康习语和全球健康习语之间隐藏的重叠。从实践的角度来看,我们的视角既评估了情感脆弱性,也评估了潜在的情感弹性和平衡的来源,同时回避了所有命名的疾病类别,可以在心理健康倡议中以最大限度地减少污名化并提高评估工具的可接受性和有效性的方式得到应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验