Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Science. 2017 Jul 14;357(6347):195-198. doi: 10.1126/science.aak9611.
The spin chemical potential characterizes the tendency of spins to diffuse. Probing this quantity could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here we introduce single-spin magnetometry as a generic platform for nonperturbative, nanoscale characterization of spin chemical potentials. We experimentally realize this platform using diamond nitrogen-vacancy centers and use it to investigate magnons in a magnetic insulator, finding that the magnon chemical potential can be controlled by driving the system's ferromagnetic resonance. We introduce a symmetry-based two-fluid theory describing the underlying magnon processes, measure the local thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled spin injection. Our results pave the way for nanoscale control and imaging of spin transport in mesoscopic systems.
自旋化学势表征了自旋扩散的趋势。探测这一物理量可以深入了解磁性绝缘体和自旋液体等材料,并有助于优化自旋电子器件。在这里,我们引入了单自旋磁强计,作为一种通用的非微扰、纳米尺度的自旋化学势表征平台。我们使用钻石中的氮空位中心实验实现了这一平台,并将其用于研究磁性绝缘体中的磁振子,发现通过驱动系统的铁磁共振可以控制磁振子化学势。我们引入了一个基于对称的双流体理论来描述潜在的磁振子过程,测量了局域热磁声子扭矩,并使用电控制自旋注入说明了检测灵敏度。我们的结果为介观系统中自旋输运的纳米级控制和成像铺平了道路。