Rable Jeffrey, Dwivedi Jyotirmay, Samarth Nitin, Stevenson Paul, Bansil Arun, Kar Swastik
Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States.
Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, United States.
Nano Lett. 2025 Jun 11;25(23):9470-9476. doi: 10.1021/acs.nanolett.5c02174. Epub 2025 Jun 3.
With rapid advances in qubit technologies, techniques for localizing, modulating, and measuring RF fields and their impact on qubit performance are of the utmost importance. Here, we demonstrate that flux-channeling from a permalloy nanowire can be used to achieve localized spatial modulation of an RF field and that the modulated field can be mapped with high resolution by using the Rabi oscillations of an NV center. Rabi maps reveal ∼100 mm wavelength microwaves concentrated in sub-300 nm regions with up to ∼16× power enhancement. This modulation is robust over a 20 dBm power range and has no adverse impact on NV coherence time. Micromagnetic simulations confirm that the modulated field results from the nanowire's stray field through its constructive/destructive interference with the incident RF field. Our findings provide a new pathway for controlling qubits, amplifying RF signals, and mapping local fields in various on-chip RF technologies.
随着量子比特技术的迅速发展,用于定位、调制和测量射频场的技术及其对量子比特性能的影响至关重要。在此,我们证明坡莫合金纳米线的磁通通道可用于实现射频场的局部空间调制,并且通过使用NV中心的拉比振荡可以高分辨率地绘制调制场。拉比图显示,波长约100毫米的微波集中在小于300纳米的区域,功率增强高达约16倍。这种调制在20 dBm的功率范围内很稳定,并且对NV相干时间没有不利影响。微磁模拟证实,调制场是由纳米线的杂散场通过其与入射射频场的相长/相消干涉产生的。我们的研究结果为控制量子比特、放大射频信号以及在各种片上射频技术中绘制局部场提供了一条新途径。