II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany.
J R Soc Interface. 2019 Aug 30;16(157):20190198. doi: 10.1098/rsif.2019.0198. Epub 2019 Aug 7.
GTPases regulate a wide range of cellular processes, such as intracellular vesicular transport, signal transduction and protein translation. These hydrolase enzymes operate as biochemical switches by toggling between an active guanosine triphosphate (GTP)-bound state and an inactive guanosine diphosphate (GDP)-bound state. We compare two network motifs, a single-species switch and an interlinked cascade that consists of two species coupled through positive and negative feedback loops. We find that interlinked cascades are closer to the ideal all-or-none switch and are more robust against fluctuating signals. While the single-species switch can only achieve bistability, interlinked cascades can be converted into oscillators by tuning the cofactor concentrations, which catalyse the activity of the cascade. These regimes can only be achieved with sufficient chemical driving provided by GTP hydrolysis. In this study, we present a thermodynamically consistent model that can achieve bistability and oscillations with the same feedback motif.
GTPases 调节广泛的细胞过程,如细胞内囊泡运输、信号转导和蛋白质翻译。这些水解酶通过在活性鸟苷三磷酸 (GTP) 结合状态和非活性鸟苷二磷酸 (GDP) 结合状态之间来回切换,充当生化开关。我们比较了两种网络基序,一种是单物种开关,另一种是由通过正反馈和负反馈环耦合的两种物质组成的互锁级联。我们发现互锁级联更接近理想的全或无开关,并且对波动的信号更稳健。虽然单物种开关只能实现双稳态,但通过调整催化级联活性的辅助因子浓度,互锁级联可以转换为振荡器。只有通过 GTP 水解提供足够的化学驱动力才能实现这些状态。在这项研究中,我们提出了一个热力学一致的模型,该模型可以使用相同的反馈基序实现双稳态和振荡。