Suppr超能文献

利用3D生物打印技术构建具有球体机械整合性的心脏组织。

Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.

作者信息

Ong Chin Siang, Fukunishi Takuma, Nashed Andrew, Blazeski Adriana, Zhang Huaitao, Hardy Samantha, DiSilvestre Deborah, Vricella Luca, Conte John, Tung Leslie, Tomaselli Gordon, Hibino Narutoshi

机构信息

Division of Cardiac Surgery, Johns Hopkins Hospital; Division of Cardiology, Johns Hopkins Hospital.

Division of Cardiac Surgery, Johns Hopkins Hospital.

出版信息

J Vis Exp. 2017 Jul 2(125):55438. doi: 10.3791/55438.

Abstract

This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.

摘要

本方案描述了一种仅使用细胞而不使用生物材料的心脏组织3D生物打印方法。首先分离、计数心肌细胞、内皮细胞和成纤维细胞,并按所需细胞比例混合。将它们在超低附着96孔板的各个孔中进行共培养。在3天内,形成跳动的球体。然后使用真空吸力通过喷嘴拾取这些球体,并使用3D生物打印机将其组装在针阵列上。然后让球体在针阵列上融合。3D生物打印3天后,将球体作为一个完整的贴片取出,该贴片已经在自发跳动。3D生物打印的心脏贴片显示出组成球体的机械整合,在心脏组织再生和作为心脏病的3D模型方面具有很高的前景。

相似文献

3
Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
Methods Mol Biol. 2020;2140:183-197. doi: 10.1007/978-1-0716-0520-2_12.
4
3D neural tissue models: From spheroids to bioprinting.
Biomaterials. 2018 Feb;154:113-133. doi: 10.1016/j.biomaterials.2017.10.002. Epub 2017 Nov 8.
5
High-throughput fabrication of vascularized spheroids for bioprinting.
Biofabrication. 2018 Jun 12;10(3):035009. doi: 10.1088/1758-5090/aac7e6.
6
UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
Tissue Eng Part C Methods. 2018 Feb;24(2):74-88. doi: 10.1089/ten.TEC.2017.0346. Epub 2017 Nov 30.
8
Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer.
PLoS One. 2018 Dec 17;13(12):e0209162. doi: 10.1371/journal.pone.0209162. eCollection 2018.
9
Bioprinting of a functional vascularized mouse thyroid gland construct.
Biofabrication. 2017 Aug 18;9(3):034105. doi: 10.1088/1758-5090/aa7fdd.
10
Bioprinting Using Organ Building Blocks: Spheroids, Organoids, and Assembloids.
Tissue Eng Part A. 2024 Jul;30(13-14):377-386. doi: 10.1089/ten.TEA.2023.0198. Epub 2024 Jan 25.

引用本文的文献

2
Three-dimensional spheroid models for cardiovascular biology and pathology.
Mechanobiol Med. 2025 Jun 28;3(3):100144. doi: 10.1016/j.mbm.2025.100144. eCollection 2025 Sep.
4
Precision improvement of robotic bioprinting via vision-based tool path compensation.
Sci Rep. 2024 Aug 1;14(1):17764. doi: 10.1038/s41598-024-68597-z.
6
Latest Advances in 3D Bioprinting of Cardiac Tissues.
Adv Mater Technol. 2022 Nov;7(11). doi: 10.1002/admt.202101636. Epub 2022 May 13.
7
In Vitro 3D Modeling of Neurodegenerative Diseases.
Bioengineering (Basel). 2023 Jan 10;10(1):93. doi: 10.3390/bioengineering10010093.
8
Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives.
Bioengineering (Basel). 2022 Oct 22;9(11):605. doi: 10.3390/bioengineering9110605.
9
Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration.
J Mol Cell Cardiol. 2022 Aug;169:13-27. doi: 10.1016/j.yjmcc.2022.04.017. Epub 2022 May 12.
10
Cell Aggregate Assembly through Microengineering for Functional Tissue Emergence.
Cells. 2022 Apr 20;11(9):1394. doi: 10.3390/cells11091394.

本文引用的文献

1
Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting<sup/>.
Tissue Eng Part B Rev. 2017 Jun;23(3):237-244. doi: 10.1089/ten.TEB.2016.0322. Epub 2017 Jan 3.
2
A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue.
Cell Biochem Biophys. 2016 Jun;74(2):93-8. doi: 10.1007/s12013-016-0730-0. Epub 2016 May 18.
3
Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease.
J Heart Lung Transplant. 2016 Jan;35(1):137-145. doi: 10.1016/j.healun.2015.06.001. Epub 2015 Jun 11.
4
Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae.
PLoS One. 2015 Sep 1;10(9):e0136681. doi: 10.1371/journal.pone.0136681. eCollection 2015.
6
Current progress in 3D printing for cardiovascular tissue engineering.
Biomed Mater. 2015 Mar 16;10(3):034002. doi: 10.1088/1748-6041/10/3/034002.
7
3D bioprinting of tissues and organs.
Nat Biotechnol. 2014 Aug;32(8):773-85. doi: 10.1038/nbt.2958.
8
A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets.
Stem Cell Reports. 2014 Jun 6;3(1):185-203. doi: 10.1016/j.stemcr.2014.05.002. eCollection 2014 Jul 8.
9
3D biofabrication strategies for tissue engineering and regenerative medicine.
Annu Rev Biomed Eng. 2014 Jul 11;16:247-76. doi: 10.1146/annurev-bioeng-071813-105155. Epub 2014 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验