Suppr超能文献

外源性唾液酸化受全身触发因素动态调节。

Extrinsic sialylation is dynamically regulated by systemic triggers .

作者信息

Manhardt Charles T, Punch Patrick R, Dougher Christopher W L, Lau Joseph T Y

机构信息

From the Departments of Molecular and Cellular Biology and.

Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263.

出版信息

J Biol Chem. 2017 Aug 18;292(33):13514-13520. doi: 10.1074/jbc.C117.795138. Epub 2017 Jul 17.

Abstract

Recent reports have documented that extracellular sialyltransferases can remodel both cell-surface and secreted glycans by a process other than the canonical cell-autonomous glycosylation that occurs within the intracellular secretory apparatus. Despite association of the abundance of these extracellular sialyltransferases, particularly ST6Gal-1, with disease states such as cancer and a variety of inflammatory conditions, the prevalence of this extrinsic glycosylation pathway remains unknown. Here we observed no significant extrinsic sialylation in resting mice, suggesting that extrinsic sialylation is not a constitutive process. However, extrinsic sialylation in the periphery could be triggered by inflammatory challenges, such as exposure to ionizing radiation or to bacterial lipopolysaccharides. Sialic acids from circulating platelets were used to remodel target cell surfaces. Platelet activation was minimally sufficient to elicit extrinsic sialylation, as demonstrated with the FeCl model of mesenteric artery thrombosis. Although extracellular ST6Gal-1 supports extrinsic sialylation, other sialyltransferases are present in systemic circulation. We also observed extrinsic sialylation in animals deficient in ST6Gal-1, demonstrating that extrinsic sialylation is not mediated exclusively by ST6Gal-1. Together, these observations form an emerging picture of glycans biosynthesized by the canonical cell-autonomous glycosylation pathway, but subjected to remodeling by extracellular glycan-modifying enzymes.

摘要

最近的报道表明,细胞外唾液酸转移酶可通过细胞内分泌装置中发生的经典细胞自主糖基化以外的过程重塑细胞表面和分泌型聚糖。尽管这些细胞外唾液酸转移酶,尤其是ST6Gal-1的丰度与癌症和多种炎症等疾病状态相关,但这种外在糖基化途径的普遍性仍不清楚。在这里,我们观察到静息小鼠中没有明显的外在唾液酸化,这表明外在唾液酸化不是一个组成性过程。然而,外周的外在唾液酸化可由炎症刺激引发,如暴露于电离辐射或细菌脂多糖。循环血小板中的唾液酸被用于重塑靶细胞表面。血小板激活足以引发外在唾液酸化,肠系膜动脉血栓形成的FeCl模型证明了这一点。虽然细胞外ST6Gal-1支持外在唾液酸化,但其他唾液酸转移酶也存在于全身循环中。我们还在缺乏ST6Gal-1的动物中观察到了外在唾液酸化,这表明外在唾液酸化并非仅由ST6Gal-1介导。总之,这些观察结果形成了一幅由经典细胞自主糖基化途径生物合成,但受细胞外聚糖修饰酶重塑的聚糖的新图景。

相似文献

1
Extrinsic sialylation is dynamically regulated by systemic triggers .
J Biol Chem. 2017 Aug 18;292(33):13514-13520. doi: 10.1074/jbc.C117.795138. Epub 2017 Jul 17.
2
Systemic ST6Gal-1 Is a Pro-survival Factor for Murine Transitional B Cells.
Front Immunol. 2018 Sep 20;9:2150. doi: 10.3389/fimmu.2018.02150. eCollection 2018.
3
Anti-inflammatory IgG production requires functional P1 promoter in β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) gene.
J Biol Chem. 2012 May 4;287(19):15365-70. doi: 10.1074/jbc.M112.345710. Epub 2012 Mar 15.
4
Remodeling of marrow hematopoietic stem and progenitor cells by non-self ST6Gal-1 sialyltransferase.
J Biol Chem. 2014 Mar 7;289(10):7178-7189. doi: 10.1074/jbc.M113.508457. Epub 2014 Jan 14.
5
Protein sialylation by sialyltransferase involves radiation resistance.
Mol Cancer Res. 2008 Aug;6(8):1316-25. doi: 10.1158/1541-7786.MCR-07-2209.
6
B-cell-independent sialylation of IgG.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7207-12. doi: 10.1073/pnas.1523968113. Epub 2016 Jun 14.
7
Role for hepatic and circulatory ST6Gal-1 sialyltransferase in regulating myelopoiesis.
J Biol Chem. 2010 Aug 6;285(32):25009-17. doi: 10.1074/jbc.M110.104406. Epub 2010 Jun 7.
9
Platelets support extracellular sialylation by supplying the sugar donor substrate.
J Biol Chem. 2014 Mar 28;289(13):8742-8. doi: 10.1074/jbc.C113.546713. Epub 2014 Feb 18.
10
The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis.
J Leukoc Biol. 2017 Aug;102(2):507-516. doi: 10.1189/jlb.3A1216-538RR. Epub 2017 May 26.

引用本文的文献

1
Role of Antibody Glycosylation in Health, Disease, and Therapy.
Handb Exp Pharmacol. 2025;288:189-209. doi: 10.1007/164_2025_744.
2
When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression.
Front Oncol. 2024 Nov 19;14:1487306. doi: 10.3389/fonc.2024.1487306. eCollection 2024.
3
Complement, Coagulation, and Fibrinolysis: The Role of the Endothelium and Its Glycocalyx Layer in Xenotransplantation.
Transpl Int. 2024 Oct 15;37:13473. doi: 10.3389/ti.2024.13473. eCollection 2024.
5
Tumor glucose metabolism and the T cell glycocalyx: implication for T cell function.
Front Immunol. 2024 May 31;15:1409238. doi: 10.3389/fimmu.2024.1409238. eCollection 2024.
6
Sialic acid in the regulation of blood cell production, differentiation and turnover.
Immunology. 2024 Aug;172(4):517-532. doi: 10.1111/imm.13780. Epub 2024 Mar 19.
7
Computational studies on glycosaminoglycan recognition of sialyl transferases.
Glycobiology. 2023 Aug 14;33(7):579-590. doi: 10.1093/glycob/cwad040.
8
Human Milk Oligosaccharides Variation in Gestational Diabetes Mellitus Mothers.
Nutrients. 2023 Mar 16;15(6):1441. doi: 10.3390/nu15061441.
9
N-Glycosylation and Inflammation; the Not-So-Sweet Relation.
Front Immunol. 2022 Jun 27;13:893365. doi: 10.3389/fimmu.2022.893365. eCollection 2022.
10
Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness.
Cancer Gene Ther. 2022 Nov;29(11):1662-1675. doi: 10.1038/s41417-022-00485-y. Epub 2022 Jun 8.

本文引用的文献

1
The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis.
J Leukoc Biol. 2017 Aug;102(2):507-516. doi: 10.1189/jlb.3A1216-538RR. Epub 2017 May 26.
2
Circulating blood and platelets supply glycosyltransferases that enable extrinsic extracellular glycosylation.
Glycobiology. 2017 Jan;27(2):188-198. doi: 10.1093/glycob/cww108. Epub 2016 Oct 26.
3
B-cell-independent sialylation of IgG.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7207-12. doi: 10.1073/pnas.1523968113. Epub 2016 Jun 14.
5
Physiochemical artifacts in FeCl3 thrombosis models.
Blood. 2015 Aug 6;126(6):700-1. doi: 10.1182/blood-2015-05-644708.
6
Significance of β-Galactoside α2,6 Sialyltranferase 1 in Cancers.
Molecules. 2015 Apr 24;20(5):7509-27. doi: 10.3390/molecules20057509.
7
Platelets in inflammation: regulation of leukocyte activities and vascular repair.
Front Immunol. 2015 Jan 6;5:678. doi: 10.3389/fimmu.2014.00678. eCollection 2014.
9
Ferric chloride-induced murine carotid arterial injury: A model of redox pathology.
Redox Biol. 2013 Jan 26;1(1):50-5. doi: 10.1016/j.redox.2012.11.001. eCollection 2013.
10
Modulation of LPS-stimulated pulmonary inflammation by Borneol in murine acute lung injury model.
Inflammation. 2014 Aug;37(4):1148-57. doi: 10.1007/s10753-014-9839-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验