Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.
J Magn Reson Imaging. 2022 Jun;55(6):1745-1758. doi: 10.1002/jmri.27983. Epub 2021 Nov 12.
Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease.
To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms.
Prospective.
Thirty-three patients prospectively imaged prior to prostatectomy.
FIELD STRENGTH/SEQUENCE: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence.
Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC).
Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant.
The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size.
We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer.
1 TECHNICAL EFFICACY: Stage 3.
弥散加权成像(DWI)常用于检测前列腺癌,主要的临床挑战是区分侵袭性和惰性疾病。
比较应用于同一组全器官病理验证 DWI 数据集的 14 种特定部位参数拟合方法,以检验以下假设:癌症分化因不同的拟合算法而不同。
前瞻性。
33 例患者在前列腺切除术前进行前瞻性成像。
磁场强度/序列:3T,视野优化和约束无失真单次激发 DWI 序列。
数据集包括无噪声数字参考对象(DRO),分发给 14 个团队,在那里计算局部实现的 DWI 参数图,包括单指数表观扩散系数(MEADC)、峰度(K)、扩散峰度(DK)、双指数扩散(BID)、伪扩散(BID*)和灌注分数(F)。中心分析得到的参数图,比较 DWI 参数和拟合算法在良性和癌组织之间的区分能力,使用接收者操作特征曲线下面积(ROC AUC)。
Levene 检验,P < 0.05 校正多重比较被认为具有统计学意义。
DRO 结果表明各站点之间的差异最小。跨站点比较表明,K、DK 和 MEADC 具有更高的前列腺癌检测能力(AUC 范围为 0.72-0.76、0.76-0.81 和 0.76-0.80),而双指数参数(BID、BID*、F)的 AUC 较低,站点间差异较大(AUC 范围为 0.53-0.80、0.51-0.81 和 0.52-0.80)。后处理参数也会影响最终的 AUC,例如 MEADC 簇大小从 0.75 变为 0.87。
我们发现传统的扩散模型在区分前列腺癌和良性组织方面具有一致的性能。我们的结果还表明,在应用于前列腺癌的放射病理学研究时,DWI 数据的后处理决策会影响敏感性和特异性。
1 技术功效:3 级。