Suppr超能文献

多部位弥散加权成像定量评估在前列腺癌侵袭性评估中的一致性。

Multi-Site Concordance of Diffusion-Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness.

机构信息

Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.

出版信息

J Magn Reson Imaging. 2022 Jun;55(6):1745-1758. doi: 10.1002/jmri.27983. Epub 2021 Nov 12.

Abstract

BACKGROUND

Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease.

PURPOSE

To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms.

STUDY TYPE

Prospective.

POPULATION

Thirty-three patients prospectively imaged prior to prostatectomy.

FIELD STRENGTH/SEQUENCE: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence.

ASSESSMENT

Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC).

STATISTICAL TEST

Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant.

RESULTS

The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size.

DATA CONCLUSION

We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer.

LEVEL OF EVIDENCE

1 TECHNICAL EFFICACY: Stage 3.

摘要

背景

弥散加权成像(DWI)常用于检测前列腺癌,主要的临床挑战是区分侵袭性和惰性疾病。

目的

比较应用于同一组全器官病理验证 DWI 数据集的 14 种特定部位参数拟合方法,以检验以下假设:癌症分化因不同的拟合算法而不同。

研究类型

前瞻性。

人群

33 例患者在前列腺切除术前进行前瞻性成像。

磁场强度/序列:3T,视野优化和约束无失真单次激发 DWI 序列。

评估

数据集包括无噪声数字参考对象(DRO),分发给 14 个团队,在那里计算局部实现的 DWI 参数图,包括单指数表观扩散系数(MEADC)、峰度(K)、扩散峰度(DK)、双指数扩散(BID)、伪扩散(BID*)和灌注分数(F)。中心分析得到的参数图,比较 DWI 参数和拟合算法在良性和癌组织之间的区分能力,使用接收者操作特征曲线下面积(ROC AUC)。

统计检验

Levene 检验,P < 0.05 校正多重比较被认为具有统计学意义。

结果

DRO 结果表明各站点之间的差异最小。跨站点比较表明,K、DK 和 MEADC 具有更高的前列腺癌检测能力(AUC 范围为 0.72-0.76、0.76-0.81 和 0.76-0.80),而双指数参数(BID、BID*、F)的 AUC 较低,站点间差异较大(AUC 范围为 0.53-0.80、0.51-0.81 和 0.52-0.80)。后处理参数也会影响最终的 AUC,例如 MEADC 簇大小从 0.75 变为 0.87。

数据结论

我们发现传统的扩散模型在区分前列腺癌和良性组织方面具有一致的性能。我们的结果还表明,在应用于前列腺癌的放射病理学研究时,DWI 数据的后处理决策会影响敏感性和特异性。

证据水平

1 技术功效:3 级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bec3/9544279/706b8c67c9e4/JMRI-55-1745-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验