Suppr超能文献

扩散加权图像分析中的优化偏差和信号推断(OBSIDIAN)。

Optimized bias and signal inference in diffusion-weighted image analysis (OBSIDIAN).

机构信息

Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.

MedTech West, Sahlgrenska University Hospital, Gothenburg, Sweden.

出版信息

Magn Reson Med. 2021 Nov;86(5):2716-2732. doi: 10.1002/mrm.28773. Epub 2021 Jul 18.

Abstract

PURPOSE

Correction of Rician signal bias in magnitude MR images.

METHODS

A model-based, iterative fitting procedure is used to simultaneously estimate true signal and underlying Gaussian noise with standard deviation on a pixel-by-pixel basis in magnitude MR images. A precomputed function that relates absolute residuals between measured signals and model fit to is used to iteratively estimate . The feasibility of the method is evaluated and compared to maximum likelihood estimation (MLE) for diffusion signal decay simulations and diffusion-weighted images of the prostate considering 21 linearly spaced b-values from 0 to 3000 s/mm . A multidirectional analysis was performed with publically available brain data.

RESULTS

Model simulations show that the Rician bias correction algorithm is fast, with an accuracy and precision that is on par to model-based MLE and direct fitting in the case of pure Gaussian noise. Increased accuracy in parameter prediction in a low signal-to-noise ratio (SNR) scenario is ideally achieved by using a composite of multiple signal decays from neighboring voxels as input for the algorithm. For patient data, good agreement with high SNR reference data of diffusion in prostate is achieved.

CONCLUSIONS

OBSIDIAN is a novel, alternative, simple to implement approach for rapid Rician bias correction applicable in any case where differences between true signal decay and underlying model function can be considered negligible in comparison to noise. The proposed composite fitting approach permits accurate parameter estimation even in typical clinical scenarios with low SNR, which significantly simplifies comparison of complex diffusion parameters among studies.

摘要

目的

校正磁共振图像幅度中的瑞利信号偏差。

方法

在幅度磁共振图像中,使用基于模型的迭代拟合过程,在逐像素的基础上同时估计真实信号和具有标准差 的基础高斯噪声。使用预先计算的函数,该函数将测量信号与模型拟合之间的绝对残差与 相关联,以迭代地估计 。评估该方法的可行性,并将其与扩散信号衰减模拟和考虑前列腺的扩散加权图像中的最大似然估计(MLE)进行比较,其中考虑了 21 个线性间隔的 b 值,范围从 0 到 3000 s/mm 。使用公共可用的脑数据进行了多方向分析。

结果

模型模拟表明,瑞利偏差校正算法速度快,在纯高斯噪声的情况下,其准确性和精度与基于模型的 MLE 和直接拟合相当。通过使用来自相邻体素的多个信号衰减的组合作为算法的输入,可以在低信噪比(SNR)情况下理想地实现参数预测的更高精度。对于患者数据,与前列腺中扩散的高 SNR 参考数据达成了良好的一致性。

结论

OBSIDIAN 是一种新颖的、替代的、易于实现的快速瑞利偏差校正方法,适用于真实信号衰减与基础模型函数之间的差异可忽略不计的任何情况,与噪声相比。所提出的复合拟合方法即使在具有低 SNR 的典型临床情况下也允许准确的参数估计,这大大简化了研究之间复杂扩散参数的比较。

相似文献

5
Adaptive phase correction of diffusion-weighted images.扩散加权图像的自适应相位校正。
Neuroimage. 2020 Feb 1;206:116274. doi: 10.1016/j.neuroimage.2019.116274. Epub 2019 Oct 17.
9
A simple noise correction scheme for diffusional kurtosis imaging.一种用于扩散峰度成像的简单噪声校正方案。
Magn Reson Imaging. 2015 Jan;33(1):124-33. doi: 10.1016/j.mri.2014.08.028. Epub 2014 Aug 28.

本文引用的文献

2
On modeling.关于建模。
Magn Reson Med. 2018 Jun;79(6):3172-3193. doi: 10.1002/mrm.27101. Epub 2018 Mar 1.
4
Denoising of diffusion MRI using random matrix theory.使用随机矩阵理论对扩散磁共振成像进行去噪
Neuroimage. 2016 Nov 15;142:394-406. doi: 10.1016/j.neuroimage.2016.08.016. Epub 2016 Aug 11.
7
Diffusion MRI noise mapping using random matrix theory.使用随机矩阵理论的扩散磁共振成像噪声映射
Magn Reson Med. 2016 Nov;76(5):1582-1593. doi: 10.1002/mrm.26059. Epub 2015 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验