Suppr超能文献

在大肠杆菌中使用tetA双选系统进行寡核苷酸和双链DNA介导的基因组编辑。

Oligo- and dsDNA-mediated genome editing using a tetA dual selection system in Escherichia coli.

作者信息

Ryu Young Shin, Chandran Sathesh-Prabu, Kim Kyungchul, Lee Sung Kuk

机构信息

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.

School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.

出版信息

PLoS One. 2017 Jul 18;12(7):e0181501. doi: 10.1371/journal.pone.0181501. eCollection 2017.

Abstract

The ability to precisely and seamlessly modify a target genome is needed for metabolic engineering and synthetic biology techniques aimed at creating potent biosystems. Herein, we report on a promising method in Escherichia coli that relies on the insertion of an optimized tetA dual selection cassette followed by replacement of the same cassette with short, single-stranded DNA (oligos) or long, double-stranded DNA and the isolation of recombinant strains by negative selection using NiCl2. This method could be rapidly and successfully used for genome engineering, including deletions, insertions, replacements, and point mutations, without inactivation of the methyl-directed mismatch repair (MMR) system and plasmid cloning. The method we describe here facilitates positive genome-edited recombinants with selection efficiencies ranging from 57 to 92%. Using our method, we increased lycopene production (3.4-fold) by replacing the ribosome binding site (RBS) of the rate-limiting gene (dxs) in the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway with a strong RBS. Thus, this method could be used to achieve scarless, proficient, and targeted genome editing for engineering E. coli strains.

摘要

对于旨在创建高效生物系统的代谢工程和合成生物学技术而言,精确且无缝地修饰目标基因组的能力是必不可少的。在此,我们报道了一种在大肠杆菌中颇具前景的方法,该方法依赖于插入优化的tetA双选盒,随后用短的单链DNA(寡核苷酸)或长的双链DNA替换同一盒,并通过使用NiCl₂进行负选来分离重组菌株。此方法可快速且成功地用于基因组工程,包括缺失、插入、替换和点突变,而不会使甲基导向错配修复(MMR)系统和质粒克隆失活。我们在此描述的方法有助于获得阳性基因组编辑重组体,选择效率在57%至92%之间。使用我们的方法,通过用强核糖体结合位点(RBS)替换1-脱氧-D-木酮糖-5-磷酸(DXP)生物合成途径中限速基因(dxs)的核糖体结合位点,我们提高了番茄红素的产量(3.4倍)。因此,该方法可用于实现对大肠杆菌菌株进行无痕、高效且靶向的基因组编辑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24a/5515457/5960a8b57f5b/pone.0181501.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验