Suppr超能文献

原核 NavMs 通道作为真核钠通道拮抗作用的结构和功能模型。

Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism.

机构信息

Institute of Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom;

Howard Hughes Medical Institute andDepartment of Cardiology, Children's Hospital Boston, Boston, MA 02115;Department of Neurobiology, Harvard Medical School, Boston, MA 02115; and.

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8428-33. doi: 10.1073/pnas.1406855111. Epub 2014 May 21.

Abstract

Voltage-gated sodium channels are important targets for the development of pharmaceutical drugs, because mutations in different human sodium channel isoforms have causal relationships with a range of neurological and cardiovascular diseases. In this study, functional electrophysiological studies show that the prokaryotic sodium channel from Magnetococcus marinus (NavMs) binds and is inhibited by eukaryotic sodium channel blockers in a manner similar to the human Nav1.1 channel, despite millions of years of divergent evolution between the two types of channels. Crystal complexes of the NavMs pore with several brominated blocker compounds depict a common antagonist binding site in the cavity, adjacent to lipid-facing fenestrations proposed to be the portals for drug entry. In silico docking studies indicate the full extent of the blocker binding site, and electrophysiology studies of NavMs channels with mutations at adjacent residues validate the location. These results suggest that the NavMs channel can be a valuable tool for screening and rational design of human drugs.

摘要

电压门控钠离子通道是药物开发的重要靶点,因为不同人类钠离子通道亚型的突变与一系列神经和心血管疾病有因果关系。在这项研究中,功能电生理学研究表明,来自海洋磁球菌的原核钠离子通道(NavMs)以类似于人类 Nav1.1 通道的方式结合并被真核钠离子通道阻滞剂抑制,尽管这两种通道在数百万年的进化过程中已经分化。NavMs 通道孔与几种溴化阻断剂化合物的晶体复合物描绘了一个位于腔体内的共同拮抗剂结合位点,该位点紧邻脂质面向的窗孔,这些窗孔被认为是药物进入的门户。计算机对接研究表明了阻滞剂结合位点的全部范围,并且对相邻残基发生突变的 NavMs 通道的电生理学研究验证了该位置。这些结果表明,NavMs 通道可以成为筛选和合理设计人类药物的有价值的工具。

相似文献

1
Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8428-33. doi: 10.1073/pnas.1406855111. Epub 2014 May 21.
2
The crystal structure of a voltage-gated sodium channel.
Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.
4
Molecular basis of ion permeability in a voltage-gated sodium channel.
EMBO J. 2016 Apr 15;35(8):820-30. doi: 10.15252/embj.201593285. Epub 2016 Feb 12.
7
Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.
Mol Pharmacol. 2012 Jul;82(1):97-104. doi: 10.1124/mol.112.078212. Epub 2012 Apr 13.
8
High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.
PLoS One. 2017 Jul 6;12(7):e0180154. doi: 10.1371/journal.pone.0180154. eCollection 2017.
10
Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels.
J Biol Chem. 2011 Mar 4;286(9):7409-17. doi: 10.1074/jbc.M110.186510. Epub 2010 Dec 22.

引用本文的文献

1
Clear Native Gel Electrophoresis for the Purification of Fluorescently Labeled Membrane Proteins in Native Nanodiscs.
Anal Chem. 2025 Aug 12;97(31):16796-16804. doi: 10.1021/acs.analchem.5c01702. Epub 2025 Aug 1.
2
Role of Ion Channels in Alzheimer's Disease Pathophysiology.
J Membr Biol. 2025 Jun;258(3):187-212. doi: 10.1007/s00232-025-00341-8. Epub 2025 May 1.
3
Role of Hydration and Amino Acid Interactions on the Ion Permeation Mechanism in the hNa1.5 Channel.
Biochemistry. 2025 Jan 7;64(1):47-56. doi: 10.1021/acs.biochem.4c00664. Epub 2024 Dec 17.
5
The chemistry of electrical signaling in sodium channels from bacteria and beyond.
Cell Chem Biol. 2024 Aug 15;31(8):1405-1421. doi: 10.1016/j.chembiol.2024.07.010.
6
Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins.
Toxins (Basel). 2024 Jan 18;16(1):55. doi: 10.3390/toxins16010055.
7
Ion channel selectivity through ion-modulated changes of selectivity filter p values.
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2220343120. doi: 10.1073/pnas.2220343120. Epub 2023 Jun 20.
8
Structural modeling of Na1.5 pore domain in closed state.
Biophys Rep. 2021 Aug 31;7(4):341-354. doi: 10.52601/bpr.2021.200021.
9
Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel.
Elife. 2023 Mar 13;12:e79271. doi: 10.7554/eLife.79271.
10
Molecular Modeling of Cardiac Sodium Channel with Mexiletine.
Membranes (Basel). 2022 Dec 10;12(12):1252. doi: 10.3390/membranes12121252.

本文引用的文献

2
Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel.
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6364-9. doi: 10.1073/pnas.1214667110. Epub 2013 Mar 29.
4
Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.
Nature. 2012 May 20;486(7401):135-9. doi: 10.1038/nature11077.
5
Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel.
Nature. 2012 May 20;486(7401):130-4. doi: 10.1038/nature11054.
6
Local anesthetic inhibition of a bacterial sodium channel.
J Gen Physiol. 2012 Jun;139(6):507-16. doi: 10.1085/jgp.201210779.
7
Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. doi: 10.1107/S0907444912001308. Epub 2012 Mar 16.
9
The crystal structure of a voltage-gated sodium channel.
Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.
10
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验