Suppr超能文献

真菌中的重复诱导点突变和其他基因组防御机制。

Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi.

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138.

出版信息

Microbiol Spectr. 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0042-2017.

Abstract

Transposable elements have colonized the genomes of nearly all organisms, including fungi. Although transposable elements may sometimes provide beneficial functions to their hosts their overall impact is considered deleterious. As a result, the activity of transposable elements needs to be counterbalanced by the host genome defenses. In fungi, the primary genome defense mechanisms include repeat-induced point mutation (RIP) and methylation induced premeiotically, meiotic silencing by unpaired DNA, sex-induced silencing, cosuppression (also known as somatic quelling), and cotranscriptional RNA surveillance. Recent studies of the filamentous fungus have shown that the process of repeat recognition for RIP apparently involves interactions between coaligned double-stranded segments of chromosomal DNA. These studies have also shown that RIP can be mediated by the conserved pathway that establishes transcriptional (heterochromatic) silencing of repetitive DNA. In light of these new findings, RIP emerges as a specialized case of the general phenomenon of heterochromatic silencing of repetitive DNA.

摘要

转座元件已经在几乎所有生物体的基因组中定殖,包括真菌。虽然转座元件有时可能为其宿主提供有益的功能,但它们的总体影响被认为是有害的。因此,转座元件的活性需要被宿主基因组防御所平衡。在真菌中,主要的基因组防御机制包括重复诱导点突变(RIP)和甲基化诱导的减数前沉默、未配对 DNA 引起的减数沉默、性诱导沉默、共抑制(也称为体细胞沉默)和共转录 RNA 监测。最近对丝状真菌的研究表明,RIP 的重复识别过程显然涉及染色体 DNA 中双链段的共定位相互作用。这些研究还表明,RIP 可以由建立重复 DNA 转录(异染色质)沉默的保守途径介导。鉴于这些新发现,RIP 作为重复 DNA 异染色质沉默这一普遍现象的一个特殊情况出现了。

相似文献

1
Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi.
Microbiol Spectr. 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0042-2017.
2
RIP: the evolutionary cost of genome defense.
Trends Genet. 2004 Sep;20(9):417-23. doi: 10.1016/j.tig.2004.07.007.
3
Recombination-independent recognition of DNA homology for repeat-induced point mutation.
Curr Genet. 2017 Jun;63(3):389-400. doi: 10.1007/s00294-016-0649-4. Epub 2016 Sep 14.
4
Repeat-induced point (RIP) mutation in the industrial workhorse fungus Trichoderma reesei.
Appl Microbiol Biotechnol. 2018 Feb;102(4):1567-1574. doi: 10.1007/s00253-017-8731-5. Epub 2018 Jan 8.
6
Gene inactivation triggered by recognition between DNA repeats.
Experientia. 1994 Mar 15;50(3):307-17. doi: 10.1007/BF01924014.
8
The impact of genome defense on mobile elements in Microbotryum.
Genetica. 2010 Mar;138(3):313-9. doi: 10.1007/s10709-009-9419-2. Epub 2009 Nov 7.
9
RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa.
Nucleic Acids Res. 2004 Aug 9;32(14):4237-43. doi: 10.1093/nar/gkh764. Print 2004.
10
Repeat-induced gene silencing in fungi.
Adv Genet. 2002;46:439-50. doi: 10.1016/s0065-2660(02)46016-6.

引用本文的文献

1
Tandem repeat-induced sexual silencing: A Rid-dependent RNAi mechanism for fungal genome defense via translational repression.
Sci Adv. 2025 Aug 22;11(34):eadu7606. doi: 10.1126/sciadv.adu7606. Epub 2025 Aug 20.
2
Are Fungal Disease Outbreaks Instigated by Starship Transposons?
Mol Plant Pathol. 2025 Jul;26(7):e70124. doi: 10.1111/mpp.70124.
3
Antifungal resistance: Emerging mechanisms and implications (Review).
Mol Med Rep. 2025 Sep;32(3). doi: 10.3892/mmr.2025.13612. Epub 2025 Jul 11.
5
6
Patterns and mechanisms of fungal genome plasticity.
Curr Biol. 2025 Jun 9;35(11):R527-R544. doi: 10.1016/j.cub.2025.04.003.

本文引用的文献

1
Sixteen Years of Meiotic Silencing by Unpaired DNA.
Adv Genet. 2017;97:1-42. doi: 10.1016/bs.adgen.2016.11.001. Epub 2016 Dec 29.
2
3
Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6135-E6144. doi: 10.1073/pnas.1614279113. Epub 2016 Sep 28.
4
Recombination-independent recognition of DNA homology for repeat-induced point mutation.
Curr Genet. 2017 Jun;63(3):389-400. doi: 10.1007/s00294-016-0649-4. Epub 2016 Sep 14.
5
A-to-I RNA editing independent of ADARs in filamentous fungi.
RNA Biol. 2016 Oct 2;13(10):940-945. doi: 10.1080/15476286.2016.1215796. Epub 2016 Aug 17.
6
Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles.
PLoS Genet. 2016 Jun 13;12(6):e1006108. doi: 10.1371/journal.pgen.1006108. eCollection 2016 Jun.
7
OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes.
Genome Biol Evol. 2016 Jul 3;8(6):2044-64. doi: 10.1093/gbe/evw121.
10
Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes.
Genome Res. 2016 Apr;26(4):499-509. doi: 10.1101/gr.199877.115. Epub 2016 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验