AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Nat Commun. 2017 Jul 19;8:16115. doi: 10.1038/ncomms16115.
H turnover at the [FeFe]-hydrogenase cofactor (H-cluster) is assumed to follow a reversible heterolytic mechanism, first yielding a proton and a hydrido-species which again is double-oxidized to release another proton. Three of the four presumed catalytic intermediates (H, H/H and H) were characterized, using various spectroscopic techniques. However, in catalytically active enzyme, the state containing the hydrido-species, which is eponymous for the proposed heterolytic mechanism, has yet only been speculated about. We use different strategies to trap and spectroscopically characterize this transient hydride state (H) for three wild-type [FeFe]-hydrogenases. Applying a novel set-up for real-time attenuated total-reflection Fourier-transform infrared spectroscopy, we monitor compositional changes in the state-specific infrared signatures of [FeFe]-hydrogenases, varying buffer pH and gas composition. We selectively enrich the equilibrium concentration of H, applying Le Chatelier's principle by simultaneously increasing substrate and product concentrations (H/H). Site-directed manipulation, targeting either the proton-transfer pathway or the adt ligand, significantly enhances H accumulation independent of pH.
[FeFe]-氢化酶辅因子(H 簇)的 H 周转率被认为遵循可逆异裂机制,首先产生一个质子和一个氢化物物种,该物种再次被双重氧化以释放另一个质子。使用各种光谱技术,对四个假定的催化中间体(H、H/H 和 H)中的三个进行了表征。然而,在催化活性酶中,含有氢化物物种的状态,这是所提出的异裂机制的代名词,尚未被推测出来。我们使用不同的策略来捕获和光谱表征三种野生型 [FeFe]-氢化酶的这种瞬态氢化物状态(H)。通过应用实时衰减全反射傅里叶变换红外光谱的新设置,我们监测缓冲 pH 值和气体组成变化时,[FeFe]-氢化酶的状态特异性红外特征的组成变化。我们通过同时增加底物和产物浓度(H/H)来选择性地富集 H 的平衡浓度,应用 Le Chatelier 原理。针对质子转移途径或 adt 配体的定点操作,独立于 pH 值显著增强了 H 的积累。