Suppr超能文献

前瞻性运动校正使用线圈安装的摄像机:交叉校准的考虑因素。

Prospective motion correction using coil-mounted cameras: Cross-calibration considerations.

机构信息

Department of Radiology, Stanford University, Stanford, California, USA.

Philips Healthcare, Gainesville, Florida, USA.

出版信息

Magn Reson Med. 2018 Apr;79(4):1911-1921. doi: 10.1002/mrm.26838. Epub 2017 Jul 19.

Abstract

PURPOSE

Optical prospective motion correction substantially reduces sensitivity to motion in neuroimaging of human subjects. However, a major barrier to clinical deployment has been the time-consuming cross-calibration between the camera and MRI scanner reference frames. This work addresses this challenge.

METHODS

A single camera was mounted onto the head coil for tracking head motion. Two new methods were developed: (1) a rapid calibration method for camera-to-scanner cross-calibration using a custom-made tool incorporating wireless active markers, and (2) a calibration adjustment method to compensate for table motion between scans. Both methods were tested at 1.5T and 3T in vivo. Simulations were performed to determine the required mechanical tolerance for repositioning of the camera.

RESULTS

The rapid calibration method is completed in a short (<30 s) scan, which is carried out only once per installation. The calibration adjustment method requires no extra scan time and runs automatically whenever the system is used. The mechanical tolerance analysis indicates that most motion (90% reduction in voxel displacement) could be corrected even with far larger camera repositioning errors than are observed in practice.

CONCLUSION

The methods presented here allow calibration of sufficient quality to be carried out and maintained with no additional technologist workload. Magn Reson Med 79:1911-1921, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

在人体神经影像学中,光学前瞻性运动校正可显著降低对运动的敏感性。然而,将其临床应用的主要障碍一直是相机和 MRI 扫描仪参考框架之间耗时的交叉校准。这项工作解决了这一挑战。

方法

将单个摄像头安装到头线圈上以跟踪头部运动。开发了两种新方法:(1)使用带有无线主动标记的定制工具进行相机到扫描仪交叉校准的快速校准方法,以及(2)用于补偿扫描之间工作台运动的校准调整方法。这两种方法都在 1.5T 和 3T 体内进行了测试。进行了模拟以确定重新定位相机所需的机械公差。

结果

快速校准方法在短时间(<30 秒)内完成,每次安装仅进行一次。校准调整方法不需要额外的扫描时间,并且在系统使用时自动运行。机械公差分析表明,即使相机重新定位误差远大于实际观察到的误差,也可以纠正大部分运动(体素位移减少 90%)。

结论

这里提出的方法允许进行足够质量的校准,并且无需额外的技术人员工作量即可进行维护。磁共振医学 79:1911-1921, 2018。© 2017 国际磁共振学会。

相似文献

1
Prospective motion correction using coil-mounted cameras: Cross-calibration considerations.
Magn Reson Med. 2018 Apr;79(4):1911-1921. doi: 10.1002/mrm.26838. Epub 2017 Jul 19.
2
Propagation of calibration errors in prospective motion correction using external tracking.
Magn Reson Med. 2014 Aug;72(2):381-8. doi: 10.1002/mrm.24943. Epub 2013 Oct 2.
3
Prospective motion correction with NMR markers using only native sequence elements.
Magn Reson Med. 2018 Apr;79(4):2046-2056. doi: 10.1002/mrm.26877. Epub 2017 Aug 24.
4
Hybrid prospective and retrospective head motion correction to mitigate cross-calibration errors.
Magn Reson Med. 2012 May;67(5):1237-51. doi: 10.1002/mrm.23101. Epub 2011 Aug 8.
5
Comparison of prospective head motion correction with NMR field probes and an optical tracking system.
Magn Reson Med. 2019 Jan;81(1):719-729. doi: 10.1002/mrm.27343. Epub 2018 Jul 29.
6
Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application.
Med Phys. 2020 Aug;47(8):3321-3331. doi: 10.1002/mp.14199. Epub 2020 Jun 1.
7
Fast noniterative calibration of an external motion tracking device.
Magn Reson Med. 2014 Apr;71(4):1489-500. doi: 10.1002/mrm.24806. Epub 2013 Jun 20.
8
An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T.
MAGMA. 2012 Dec;25(6):443-53. doi: 10.1007/s10334-012-0320-0. Epub 2012 Jun 13.
9
Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain.
PLoS One. 2012;7(11):e48088. doi: 10.1371/journal.pone.0048088. Epub 2012 Nov 7.
10
Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system.
Magn Reson Imaging. 2017 Jun;39:44-52. doi: 10.1016/j.mri.2017.01.018. Epub 2017 Jan 27.

引用本文的文献

1
Motion-Robust Direct Myelin Imaging in MRI using Self-Gating.
Res Sq. 2025 Aug 27:rs.3.rs-7199927. doi: 10.21203/rs.3.rs-7199927/v1.
2
gammaSTAR: A framework for the development of dynamic, real-time capable MR sequences.
Magn Reson Med. 2025 Oct;94(4):1485-1499. doi: 10.1002/mrm.30573. Epub 2025 May 20.
4
External Hardware and Sensors, for Improved MRI.
J Magn Reson Imaging. 2023 Mar;57(3):690-705. doi: 10.1002/jmri.28472. Epub 2022 Nov 3.
5
Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges.
J Digit Imaging. 2023 Feb;36(1):204-230. doi: 10.1007/s10278-022-00721-9. Epub 2022 Nov 2.
6
High-resolution Structural Magnetic Resonance Imaging and Quantitative Susceptibility Mapping.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):13-39. doi: 10.1016/j.mric.2020.09.002.
7
Prospective motion correction for diffusion weighted EPI of the brain using an optical markerless tracker.
Magn Reson Med. 2021 Mar;85(3):1427-1440. doi: 10.1002/mrm.28524. Epub 2020 Sep 29.
8
A within-coil optical prospective motion-correction system for brain imaging at 7T.
Magn Reson Med. 2020 Sep;84(3):1661-1671. doi: 10.1002/mrm.28211. Epub 2020 Feb 20.
9
Resting State fMRI: Going Through the Motions.
Front Neurosci. 2019 Aug 13;13:825. doi: 10.3389/fnins.2019.00825. eCollection 2019.
10
Rigid Motion Correction for Brain PET/MR Imaging using Optical Tracking.
IEEE Trans Radiat Plasma Med Sci. 2019 Jul;3(4):498-503. doi: 10.1109/TRPMS.2018.2878978. Epub 2018 Oct 31.

本文引用的文献

1
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction.
PLoS One. 2015 Jul 30;10(7):e0133921. doi: 10.1371/journal.pone.0133921. eCollection 2015.
2
Contact-free physiological monitoring using a markerless optical system.
Magn Reson Med. 2015 Aug;74(2):571-7. doi: 10.1002/mrm.25781. Epub 2015 May 18.
3
Toward Quantifying the Prevalence, Severity, and Cost Associated With Patient Motion During Clinical MR Examinations.
J Am Coll Radiol. 2015 Jul;12(7):689-95. doi: 10.1016/j.jacr.2015.03.007. Epub 2015 May 9.
4
Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
Neuroimage. 2015 Jun;113:1-12. doi: 10.1016/j.neuroimage.2015.03.013. Epub 2015 Mar 14.
5
Quantitative framework for prospective motion correction evaluation.
Magn Reson Med. 2016 Feb;75(2):810-6. doi: 10.1002/mrm.25580. Epub 2015 Mar 11.
6
Motion artifacts in MRI: A complex problem with many partial solutions.
J Magn Reson Imaging. 2015 Oct;42(4):887-901. doi: 10.1002/jmri.24850. Epub 2015 Jan 28.
7
Propagation of calibration errors in prospective motion correction using external tracking.
Magn Reson Med. 2014 Aug;72(2):381-8. doi: 10.1002/mrm.24943. Epub 2013 Oct 2.
8
Prospective slice-by-slice motion correction reduces false positive activations in fMRI with task-correlated motion.
Neuroimage. 2014 Jan 1;84:124-32. doi: 10.1016/j.neuroimage.2013.08.006. Epub 2013 Aug 15.
9
Prospective motion correction using inductively coupled wireless RF coils.
Magn Reson Med. 2013 Sep;70(3):639-47. doi: 10.1002/mrm.24845. Epub 2013 Jun 27.
10
Fast noniterative calibration of an external motion tracking device.
Magn Reson Med. 2014 Apr;71(4):1489-500. doi: 10.1002/mrm.24806. Epub 2013 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验