Suppr超能文献

基于 GBS 的基因组选择在严重终末干旱下提高豌豆粒产量。

GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal Drought.

出版信息

Plant Genome. 2017 Jul;10(2). doi: 10.3835/plantgenome2016.07.0072.

Abstract

Terminal drought is the main stress that limits pea ( L.) grain yield in Mediterranean-climate regions. This study provides an unprecedented assessment of the predictive ability of genomic selection (GS) for grain yield under severe terminal drought using genotyping-by-sequencing (GBS) data. Additional aims were to assess the GS predictive ability for different GBS data quality filters and GS models, comparing intrapopulation with interpopulation GS predictive ability and to perform genome-wide association (GWAS) studies. The yield and onset of flowering of 315 lines from three recombinant inbred line (RIL) populations issued by connected crosses between three elite cultivars were assessed under a field rainout shelter. We defined an adjusted yield, which is associated with intrinsic drought tolerance, as the yield deviation from the value expected as a function of onset of flowering (which correlated negatively with grain yield). Total polymorphic markers ranged from approximately 100 (minimum of eight reads per locus, maximum 10% genotype missing data) to over 7500 markers (minimum of four reads, maximum 50% missing rate). Best predictions were provided by Bayesian Lasso (BL) or ridge regression best linear unbiased prediction (rrBLUP), rather than support vector regression (SVR) models, with at least 400-500 markers. Intrapopulation GS predictive ability exceeded 0.5 for yield and onset of flowering in all populations and approached 0.4 for the adjusted yield of a population with high trait variation. Genomic selection was preferable to phenotypic selection in terms of predicted yield gains. Interpopulation GS predictive ability varied largely depending on the pair of populations. GWAS revealed extensive colocalization of markers associated with high yield and early flowering and suggested that they are concentrated in a few genomic regions.

摘要

终端干旱是限制地中海气候区豌豆(L.)籽粒产量的主要胁迫因素。本研究利用基于测序的基因型(GBS)数据,前所未有地评估了基因组选择(GS)在严重终端干旱下对籽粒产量的预测能力。此外,还评估了不同 GBS 数据质量滤波器和 GS 模型的 GS 预测能力,比较了群体内和群体间 GS 预测能力,并进行了全基因组关联(GWAS)研究。在田间避雨棚下,评估了由三个优良品种的连交产生的三个重组自交系(RIL)群体的 315 个系的产量和开花起始。我们定义了一个调整后的产量,它与内在耐旱性相关,作为与开花起始相关的产量偏差(与籽粒产量呈负相关)。总多态性标记数从大约 100 个(每个位点至少 8 个读数,最大 10%基因型缺失数据)到超过 7500 个标记(最小 4 个读数,最大 50%缺失率)。贝叶斯套索(BL)或岭回归最佳线性无偏预测(rrBLUP)模型提供了最佳预测,而不是支持向量回归(SVR)模型,至少需要 400-500 个标记。在所有群体中,产量和开花起始的群体内 GS 预测能力都超过 0.5,在具有高性状变异的群体中,调整后的产量预测能力接近 0.4。就预测产量增加而言,基因组选择优于表型选择。群体间 GS 预测能力差异很大,取决于种群对。GWAS 揭示了与高产量和早期开花相关的标记广泛共定位,并表明它们集中在少数几个基因组区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验