Singh Soraisam Gobinkumar, Das Dulumani, Barman Utpal, Saikia Manob Jyoti
Faculty of Computer Technology, Assam down town University, Guwahati 781026, Assam, India.
Biomedical Sensors and Systems Lab, University of North Florida, Jacksonville, FL 32224, USA.
Diagnostics (Basel). 2024 Aug 13;14(16):1759. doi: 10.3390/diagnostics14161759.
Alzheimer's disease is a weakening neurodegenerative condition with profound cognitive implications, making early and accurate detection crucial for effective treatment. In recent years, machine learning, particularly deep learning, has shown significant promise in detecting mild cognitive impairment to Alzheimer's disease conversion. This review synthesizes research on machine learning approaches for predicting conversion from mild cognitive impairment to Alzheimer's disease dementia using magnetic resonance imaging, positron emission tomography, and other biomarkers. Various techniques used in literature such as machine learning, deep learning, and transfer learning were examined in this study. Additionally, data modalities and feature extraction methods analyzed by different researchers are discussed. This review provides a comprehensive overview of the current state of research in Alzheimer's disease detection and highlights future research directions.
阿尔茨海默病是一种具有严重认知影响的神经退行性疾病,早期准确检测对于有效治疗至关重要。近年来,机器学习,尤其是深度学习,在检测轻度认知障碍向阿尔茨海默病的转化方面显示出巨大潜力。本综述综合了关于使用磁共振成像、正电子发射断层扫描和其他生物标志物预测从轻度认知障碍向阿尔茨海默病痴呆转化的机器学习方法的研究。本研究考察了文献中使用的各种技术,如机器学习、深度学习和迁移学习。此外,还讨论了不同研究人员分析的数据模态和特征提取方法。本综述全面概述了阿尔茨海默病检测的当前研究现状,并突出了未来的研究方向。