Rinschen Markus M, Hoppe Ann-Kathrin, Grahammer Florian, Kann Martin, Völker Linus A, Schurek Eva-Maria, Binz Julie, Höhne Martin, Demir Fatih, Malisic Milena, Huber Tobias B, Kurschat Christine, Kizhakkedathu Jayachandran N, Schermer Bernhard, Huesgen Pitter F, Benzing Thomas
Department II of Internal Medicine.
Center for Molecular Medicine Cologne (CMMC).
J Am Soc Nephrol. 2017 Oct;28(10):2867-2878. doi: 10.1681/ASN.2016101119. Epub 2017 Jul 19.
Regulated intracellular proteostasis, controlled in part by proteolysis, is essential in maintaining the integrity of podocytes and the glomerular filtration barrier of the kidney. We applied a novel proteomics technology that enables proteome-wide identification, mapping, and quantification of protein N-termini to comprehensively characterize cleaved podocyte proteins in the glomerulus We found evidence that defined proteolytic cleavage results in various proteoforms of important podocyte proteins, including those of podocin, nephrin, neph1, -actinin-4, and vimentin. Quantitative mapping of N-termini demonstrated perturbation of protease action during podocyte injury , including diminished proteolysis of -actinin-4. Differentially regulated protease substrates comprised cytoskeletal proteins as well as intermediate filaments. Determination of preferential protease motifs during podocyte damage indicated activation of caspase proteases and inhibition of arginine-specific proteases. Several proteolytic processes were clearly site-specific, were conserved across species, and could be confirmed by differential migration behavior of protein fragments in gel electrophoresis. Some of the proteolytic changes discovered also occurred in two models of podocyte damage (WT1 heterozygous knockout mice and puromycin aminonucleoside-treated rats). Thus, we provide direct and systems-level evidence that the slit diaphragm and podocyte cytoskeleton are regulated targets of proteolytic modification, which is altered upon podocyte damage.
受蛋白水解部分控制的细胞内蛋白质稳态调节,对于维持足细胞的完整性和肾脏的肾小球滤过屏障至关重要。我们应用了一种新型蛋白质组学技术,该技术能够对蛋白质N端进行全蛋白质组范围的鉴定、定位和定量,以全面表征肾小球中被切割的足细胞蛋白质。我们发现有证据表明,特定的蛋白水解切割会产生重要足细胞蛋白质的各种蛋白异构体,包括足突蛋白、nephrin、neph1、α-辅肌动蛋白-4和波形蛋白的异构体。N端的定量定位表明足细胞损伤期间蛋白酶作用受到干扰,包括α-辅肌动蛋白-4的蛋白水解减少。差异调节的蛋白酶底物包括细胞骨架蛋白和中间丝。确定足细胞损伤期间的优先蛋白酶基序表明半胱天冬酶蛋白酶被激活,精氨酸特异性蛋白酶受到抑制。几个蛋白水解过程具有明显的位点特异性,在物种间保守,并且可以通过蛋白质片段在凝胶电泳中的差异迁移行为得到证实。发现的一些蛋白水解变化也发生在两种足细胞损伤模型(WT1杂合敲除小鼠和嘌呤霉素氨基核苷处理的大鼠)中。因此,我们提供了直接的系统水平证据,表明裂孔隔膜和足细胞细胞骨架是蛋白水解修饰的调节靶点,在足细胞损伤时会发生改变。