Research and Development, NHS Blood and Transplant, Bristol & Oxford, UK.
Nuffield Department of Surgical Sciences, Oxford University Hospital Oxford, Biomedical Research Centre, University of Oxford, Oxford, UK.
Am J Transplant. 2022 Apr;22(4):1073-1087. doi: 10.1111/ajt.16912. Epub 2022 Feb 4.
In brain death, cerebral injury contributes to systemic biological dysregulation, causing significant cellular stress in donor kidneys adversely impacting the quality of grafts. Here, we hypothesized that donation after brain death (DBD) kidneys undergo proteolytic processes that may deem grafts susceptible to posttransplant dysfunction. Using mass spectrometry and immunoblotting, we mapped degradation profiles of cytoskeletal proteins in deceased and living donor kidney biopsies. We found that key cytoskeletal proteins in DBD kidneys were proteolytically cleaved, generating peptide fragments, predominantly in grafts with suboptimal posttransplant function. Interestingly, α-actinin-4 and talin-1 proteolytic fragments were detected in brain death but not in circulatory death or living donor kidneys with similar donor characteristics. As talin-1 is a specific proteolytic target of calpain-1, we investigated a potential trigger of calpain activation and talin-1 degradation using human ex vivo precision-cut kidney slices and in vitro podocytes. Notably, we showed that activation of calpain-1 by transforming growth factor-β generated proteolytic fragments of talin-1 that matched the degradation fragments detected in DBD preimplantation kidneys, also causing dysregulation of the actin cytoskeleton in human podocytes; events that were reversed by calpain-1 inhibition. Our data provide initial evidence that brain death donor kidneys are more susceptible to cytoskeletal protein degradation. Correlation to posttransplant outcomes may be established by future studies.
在脑死亡中,脑损伤导致全身生物调节紊乱,使供体肾脏产生严重的细胞应激,对移植物质量产生不利影响。在这里,我们假设脑死亡后捐献(DBD)的肾脏会经历蛋白水解过程,这可能使移植物容易发生移植后功能障碍。我们使用质谱和免疫印迹法,绘制了死亡和活体供体肾活检中细胞骨架蛋白的降解谱。我们发现,DBD 肾脏中的关键细胞骨架蛋白被蛋白水解切割,产生肽片段,主要在移植后功能不佳的移植物中。有趣的是,α-辅肌动蛋白-4 和桩蛋白-1 的蛋白水解片段仅在脑死亡中检测到,而在循环死亡或具有相似供体特征的活体供体肾脏中则没有检测到。由于桩蛋白-1 是钙蛋白酶-1 的特异性蛋白水解靶标,我们使用人离体精确切割肾切片和体外足细胞研究了钙蛋白酶激活和桩蛋白-1 降解的潜在触发因素。值得注意的是,我们表明转化生长因子-β激活钙蛋白酶-1 产生的桩蛋白-1 蛋白水解片段与 DBD 植入前肾脏中检测到的降解片段相匹配,同时也导致人足细胞中肌动蛋白细胞骨架的失调;这些事件通过钙蛋白酶-1 抑制得到逆转。我们的数据提供了初步证据,表明脑死亡供体肾脏更容易发生细胞骨架蛋白降解。未来的研究可能会确定与移植后结局的相关性。