Suppr超能文献

不同脑电图参考如何影响传感器水平功能连接图。

How Different EEG References Influence Sensor Level Functional Connectivity Graphs.

作者信息

Huang Yunzhi, Zhang Junpeng, Cui Yuan, Yang Gang, He Ling, Liu Qi, Yin Guangfu

机构信息

Department of Biomedical Engineering, College of Materials Science and Engineering, Sichuan UniversityChengdu, China.

School of Electrical Engineering and Information, Sichuan UniversityChengdu, China.

出版信息

Front Neurosci. 2017 Jul 5;11:368. doi: 10.3389/fnins.2017.00368. eCollection 2017.

Abstract

Hamming Distance is applied to distinguish the difference of functional connectivity networkThe orientations of sources are testified to influence the scalp Functional Connectivity Graph (FCG) from different references significantlyREST, the reference electrode standardization technique, is proved to have an overall stable and excellent performance in variable situations. The choice of an electroencephalograph (EEG) reference is a practical issue for the study of brain functional connectivity. To study how EEG reference influence functional connectivity estimation (FCE), this study compares the differences of FCE resulting from the different references such as REST (the reference electrode standardization technique), average reference (AR), linked mastoids (LM), and left mastoid references (LR). Simulations involve two parts. One is based on 300 dipolar pairs, which are located on the superficial cortex with a radial source direction. The other part is based on 20 dipolar pairs. In each pair, the dipoles have various orientation combinations. The relative error (RE) and Hamming distance (HD) between functional connectivity matrices of ideal recordings and that of recordings obtained with different references, are metrics to compare the differences of the scalp functional connectivity graph (FCG) derived from those two kinds of recordings. Lower RE and HD values imply more similarity between the two FCGs. Using the ideal recording (IR) as a standard, the results show that AR, LM and LR perform well only in specific conditions, i.e., AR performs stable when there is no upward component in sources' orientation. LR achieves desirable results when the sources' locations are away from left ear. LM achieves an indistinct difference with IR, i.e., when the distribution of source locations is symmetric along the line linking the two ears. However, REST not only achieves excellent performance for superficial and radial dipolar sources, but also achieves a stable and robust performance with variable source locations and orientations. Benefitting from the stable and robust performance of REST vs. other reference methods, REST might best recover the real FCG of EEG. Thus, REST based FCG may be a good candidate to compare the FCG of EEG based on different references from different labs.

摘要

汉明距离用于区分功能连接网络的差异。已证实源的方向会显著影响来自不同参考的头皮功能连接图(FCG)。静息态(REST),即参考电极标准化技术,在各种情况下被证明具有整体稳定且出色的性能。脑电图(EEG)参考的选择是脑功能连接研究中的一个实际问题。为了研究EEG参考如何影响功能连接估计(FCE),本研究比较了不同参考(如REST(参考电极标准化技术)、平均参考(AR)、联合乳突(LM)和左乳突参考(LR))导致的FCE差异。模拟包括两部分。一部分基于300个偶极对,它们位于具有径向源方向的浅表皮质上。另一部分基于20个偶极对。在每一对中,偶极具有各种方向组合。理想记录的功能连接矩阵与不同参考获得的记录的功能连接矩阵之间的相对误差(RE)和汉明距离(HD),是比较从这两种记录得出的头皮功能连接图(FCG)差异的指标。较低的RE和HD值意味着两个FCG之间的相似度更高。以理想记录(IR)为标准,结果表明AR、LM和LR仅在特定条件下表现良好,即当源方向没有向上分量时AR表现稳定。当源位置远离左耳时LR能取得理想结果。LM与IR的差异不明显,即当源位置分布沿连接双耳的线对称时。然而,REST不仅对浅表和径向偶极源表现出色,而且在源位置和方向可变时也具有稳定且稳健的性能。得益于REST相对于其他参考方法的稳定且稳健的性能,REST可能最能恢复EEG的真实FCG。因此,基于REST的FCG可能是比较来自不同实验室基于不同参考的EEG的FCG的良好候选方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9fa/5496954/86aa9cd096b3/fnins-11-00368-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验