Suppr超能文献

使用图论比较不同大小和连接密度的脑网络。

Comparing brain networks of different size and connectivity density using graph theory.

机构信息

Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands.

出版信息

PLoS One. 2010 Oct 28;5(10):e13701. doi: 10.1371/journal.pone.0013701.

Abstract

Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N) and the average degree (k) of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring) non-significant (significant) connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.

摘要

图论是研究大脑功能和解剖连接组织的有价值的框架。然而,将其用于比较网络拓扑结构并非没有困难。图度量可能受节点数 (N) 和网络平均度 (k) 的影响。这种影响的明确形式取决于网络拓扑的类型,而对于实验数据来说,网络拓扑通常是未知的。因此,具有不同 N 和/或 k 的经验网络之间的图度量的直接比较可能会产生虚假结果。我们列出了各种旨在克服这些困难的方法的优缺点。我们讨论了通过固定阈值、平均度数或边缘密度以及使用加权图来对无权重图进行初始图定义的方法。例如,选择一个阈值来固定 N 和 k 确实可以消除大小和密度的影响,但可能会通过强制(忽略)非显著(显著)连接来修改网络。与固定 N 和 k 相反,图度量通常通过随机替代物进行归一化,但实际上,对于常用的聚类系数和小世界指数,这可能会增加对 N 和 k 差异的敏感性。为了避免这种偏差,我们尝试估计经验网络的 N,k 依赖性,如果成功,则可以用于校正大小效应。我们还添加了一些在社会科学中使用的基于局部网络结构统计的方法,包括指数随机图模型和基元计数。我们表明,这里研究的方法都不能进行可靠和完全无偏的比较,但有些方法比其他方法表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d98c/2965659/eb76fe232303/pone.0013701.g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验