Lee Youngjo, Alam Md Moudud, Noh Maengseok, Rönnegård Lars, Skarin Anna
Department of Statistics Seoul National University Seoul Korea.
School of Technology and Business Studies Dalarna University Falun Sweden.
Ecol Evol. 2016 Sep 12;6(19):7047-7056. doi: 10.1002/ece3.2449. eCollection 2016 Oct.
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
我们分析了一组真实数据集,该数据集与在瑞典北部某林区进行的一项调查中获得的驯鹿粪便颗粒群计数有关。在该数据集中,超过70%的计数为零,且存在高度空间相关性。我们在泊松广义线性混合模型(GLMM)、拟泊松分层广义线性模型(HGLM)、零膨胀泊松模型(ZIP)和障碍模型中使用条件自回归随机效应来对空间相关性进行建模。拟泊松HGLM既允许存在零值过多导致的欠分散和过分散情况,而ZIP模型和障碍模型仅允许过分散情况。在分析该真实数据集时,我们发现拟泊松HGLM比其他常用模型(例如普通泊松HGLM、空间ZIP模型和空间障碍模型)表现更好,并且具有空间相关性的欠分散泊松HGLM对驯鹿数据拟合效果最佳。我们使用针对HGLM的统一算法开发了用于拟合这些模型的R代码。具有极高比例零值的空间计数响应以及欠分散情况可以使用具有空间随机效应的拟泊松HGLM成功建模。