Suppr超能文献

相关泊松模型在年龄-时期-队列分析中的应用。

Correlated Poisson models for age-period-cohort analysis.

机构信息

DHHS, NIH, Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.

DHHS, NIH, Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.

出版信息

Stat Med. 2018 Feb 10;37(3):405-424. doi: 10.1002/sim.7519. Epub 2017 Oct 4.

Abstract

Age-period-cohort (APC) models are widely used to analyze population-level rates, particularly cancer incidence and mortality. These models are used for descriptive epidemiology, comparative risk analysis, and extrapolating future disease burden. Traditional APC models have 2 major limitations: (1) they lack parsimony because they require estimation of deviations from linear trends for each level of age, period, and cohort; and (2) rates observed at similar ages, periods, and cohorts are treated as independent, ignoring any correlations between them that may lead to biased parameter estimates and inefficient standard errors. We propose a novel approach to estimation of APC models using a spatially correlated Poisson model that accounts for over-dispersion and correlations in age, period, and cohort, simultaneously. We treat the outcome of interest as event rates occurring over a grid defined by values of age, period, and cohort. Rates defined in this manner lend themselves to well-established approaches from spatial statistics in which correlation among proximate observations may be modeled using a spatial random effect. Through simulations, we show that in the presence of spatial dependence and over-dispersion: (1) the correlated Poisson model attains lower AIC; (2) the traditional APC model produces biased trend parameter estimates; and (3) the correlated Poisson model corrects most of this bias. We illustrate our approach using brain and breast cancer incidence rates from the Surveillance Epidemiology and End Results Program of the United States. Our approach can be easily extended to accommodate comparative risk analyses and interpolation of cells in the Lexis with sparse data.

摘要

年龄-时期-队列(APC)模型广泛用于分析人群水平的比率,特别是癌症发病率和死亡率。这些模型用于描述性流行病学、比较风险分析和推断未来疾病负担。传统的 APC 模型有 2 个主要局限性:(1)它们缺乏简约性,因为它们需要估计每个年龄、时期和队列水平的线性趋势偏差;(2)在相似的年龄、时期和队列中观察到的比率被视为独立的,忽略了它们之间可能导致有偏参数估计和低效标准误差的任何相关性。我们提出了一种使用空间相关泊松模型估计 APC 模型的新方法,该方法同时考虑了年龄、时期和队列的过度分散和相关性。我们将感兴趣的结果视为在由年龄、时期和队列值定义的网格上发生的事件率。以这种方式定义的比率适合于空间统计学中成熟的方法,其中相邻观测值之间的相关性可以使用空间随机效应来建模。通过模拟,我们表明在存在空间相关性和过度分散的情况下:(1)相关泊松模型获得更低的 AIC;(2)传统 APC 模型产生有偏的趋势参数估计;(3)相关泊松模型纠正了大部分这种偏差。我们使用来自美国监测、流行病学和最终结果计划的脑癌和乳腺癌发病率数据来说明我们的方法。我们的方法可以很容易地扩展到比较风险分析和稀疏数据的 Lexis 单元格插值。

相似文献

1
Correlated Poisson models for age-period-cohort analysis.
Stat Med. 2018 Feb 10;37(3):405-424. doi: 10.1002/sim.7519. Epub 2017 Oct 4.
3
Changing patterns in breast cancer incidence trends.
J Natl Cancer Inst Monogr. 2006(36):19-25. doi: 10.1093/jncimonographs/lgj016.
4
Italian cancer figures, report 2012: Cancer in children and adolescents.
Epidemiol Prev. 2013 Jan-Feb;37(1 Suppl 1):1-225.
8
Comparative age-period-cohort analysis.
BMC Med Res Methodol. 2023 Oct 18;23(1):238. doi: 10.1186/s12874-023-02039-8.
10
Recent incidence trend of elderly patients with glioblastoma in the United States, 2000-2017.
BMC Cancer. 2021 Jan 12;21(1):54. doi: 10.1186/s12885-020-07778-1.

引用本文的文献

1
Global Burden of Dental Caries from 1990 to 2021 and Future Projections.
Int Dent J. 2025 Jul 25;75(5):100904. doi: 10.1016/j.identj.2025.100904.
2
Global, regional, and national prevalence of prostate cancer from 1990 to 2021: a trend and health inequality analyses.
Front Public Health. 2025 Jun 11;13:1595159. doi: 10.3389/fpubh.2025.1595159. eCollection 2025.
4
Trends in incidence, mortality, and DALYs of cystic echinococcosis in Central Asia from 1992 to 2021: an age-period-cohort analysis.
Front Public Health. 2025 Jan 23;12:1504481. doi: 10.3389/fpubh.2024.1504481. eCollection 2024.
7
Iron Deficiency: Global Trends and Projections from 1990 to 2050.
Nutrients. 2024 Oct 10;16(20):3434. doi: 10.3390/nu16203434.
9
Advances in statistical methods for cancer surveillance research: an age-period-cohort perspective.
Front Oncol. 2024 Feb 9;13:1332429. doi: 10.3389/fonc.2023.1332429. eCollection 2023.
10
Smoothing Lexis diagrams using kernel functions: A contemporary approach.
Stat Methods Med Res. 2023 Sep;32(9):1799-1810. doi: 10.1177/09622802231192950. Epub 2023 Aug 24.

本文引用的文献

1
Spatial modeling of data with excessive zeros applied to reindeer pellet-group counts.
Ecol Evol. 2016 Sep 12;6(19):7047-7056. doi: 10.1002/ece3.2449. eCollection 2016 Oct.
2
A unified approach for assessing heterogeneity in age-period-cohort model parameters using random effects.
Stat Methods Med Res. 2019 Jan;28(1):20-34. doi: 10.1177/0962280217713033. Epub 2017 Jun 7.
3
Colorectal Cancer Incidence Patterns in the United States, 1974-2013.
J Natl Cancer Inst. 2017 Aug 1;109(8). doi: 10.1093/jnci/djw322.
4
Trends in premature mortality in the USA by sex, race, and ethnicity from 1999 to 2014: an analysis of death certificate data.
Lancet. 2017 Mar 11;389(10073):1043-1054. doi: 10.1016/S0140-6736(17)30187-3. Epub 2017 Jan 26.
5
Trends in the Incidence of Fatal Prostate Cancer in the United States by Race.
Eur Urol. 2017 Feb;71(2):195-201. doi: 10.1016/j.eururo.2016.05.011. Epub 2016 Jul 27.
6
Age-period-cohort analysis of suicide mortality by gender among white and black Americans, 1983-2012.
Int J Equity Health. 2016 Jul 13;15(1):107. doi: 10.1186/s12939-016-0400-2.
7
Future of Hepatocellular Carcinoma Incidence in the United States Forecast Through 2030.
J Clin Oncol. 2016 May 20;34(15):1787-94. doi: 10.1200/JCO.2015.64.7412. Epub 2016 Apr 4.
8
Decomposing Black-White Disparities in Heart Disease Mortality in the United States, 1973-2010: An Age-Period-Cohort Analysis.
Am J Epidemiol. 2015 Aug 15;182(4):302-12. doi: 10.1093/aje/kwv050. Epub 2015 Jul 20.
9
Estrogen Receptor Status and the Future Burden of Invasive and In Situ Breast Cancers in the United States.
J Natl Cancer Inst. 2015 Jun 10;107(9). doi: 10.1093/jnci/djv159. Print 2015 Sep.
10
A web tool for age-period-cohort analysis of cancer incidence and mortality rates.
Cancer Epidemiol Biomarkers Prev. 2014 Nov;23(11):2296-302. doi: 10.1158/1055-9965.EPI-14-0300. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验