DHHS, NIH, Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.
DHHS, NIH, Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.
Stat Med. 2018 Feb 10;37(3):405-424. doi: 10.1002/sim.7519. Epub 2017 Oct 4.
Age-period-cohort (APC) models are widely used to analyze population-level rates, particularly cancer incidence and mortality. These models are used for descriptive epidemiology, comparative risk analysis, and extrapolating future disease burden. Traditional APC models have 2 major limitations: (1) they lack parsimony because they require estimation of deviations from linear trends for each level of age, period, and cohort; and (2) rates observed at similar ages, periods, and cohorts are treated as independent, ignoring any correlations between them that may lead to biased parameter estimates and inefficient standard errors. We propose a novel approach to estimation of APC models using a spatially correlated Poisson model that accounts for over-dispersion and correlations in age, period, and cohort, simultaneously. We treat the outcome of interest as event rates occurring over a grid defined by values of age, period, and cohort. Rates defined in this manner lend themselves to well-established approaches from spatial statistics in which correlation among proximate observations may be modeled using a spatial random effect. Through simulations, we show that in the presence of spatial dependence and over-dispersion: (1) the correlated Poisson model attains lower AIC; (2) the traditional APC model produces biased trend parameter estimates; and (3) the correlated Poisson model corrects most of this bias. We illustrate our approach using brain and breast cancer incidence rates from the Surveillance Epidemiology and End Results Program of the United States. Our approach can be easily extended to accommodate comparative risk analyses and interpolation of cells in the Lexis with sparse data.
年龄-时期-队列(APC)模型广泛用于分析人群水平的比率,特别是癌症发病率和死亡率。这些模型用于描述性流行病学、比较风险分析和推断未来疾病负担。传统的 APC 模型有 2 个主要局限性:(1)它们缺乏简约性,因为它们需要估计每个年龄、时期和队列水平的线性趋势偏差;(2)在相似的年龄、时期和队列中观察到的比率被视为独立的,忽略了它们之间可能导致有偏参数估计和低效标准误差的任何相关性。我们提出了一种使用空间相关泊松模型估计 APC 模型的新方法,该方法同时考虑了年龄、时期和队列的过度分散和相关性。我们将感兴趣的结果视为在由年龄、时期和队列值定义的网格上发生的事件率。以这种方式定义的比率适合于空间统计学中成熟的方法,其中相邻观测值之间的相关性可以使用空间随机效应来建模。通过模拟,我们表明在存在空间相关性和过度分散的情况下:(1)相关泊松模型获得更低的 AIC;(2)传统 APC 模型产生有偏的趋势参数估计;(3)相关泊松模型纠正了大部分这种偏差。我们使用来自美国监测、流行病学和最终结果计划的脑癌和乳腺癌发病率数据来说明我们的方法。我们的方法可以很容易地扩展到比较风险分析和稀疏数据的 Lexis 单元格插值。