Britto Bisso Frank, Aguilar Rodrigo, Shree Durga, Zhu Yinan, Espinoza Mijael, Diaz Benjamin, Cuba Samaniego Christian
Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
Universidad Nacional Autonoma de Mexico Escuela Nacional de Estudios Superiores Unidad Juriquilla, Queretaro, Mexico.
Open Biol. 2025 Jul;15(7):240377. doi: 10.1098/rsob.240377. Epub 2025 Jul 16.
At a coarse level, pattern recognition within cells involves sensing of environmental signals by surface receptors, and activating downstream signalling pathways that ultimately drive a transcriptome response, enabling biological functions such as differentiation, migration, proliferation, apoptosis or cell-type specification. This kind of decision-making process resembles a classification task that, inspired by machine learning concepts, can be understood in terms of a decision boundary: the combination of inputs relative to the classification region defined by this boundary defines context-specific responses. In this report, we contextualize machine learning concepts within a biological framework to explore the structural and functional similarities (and differences) between artificial neural networks, signalling pathways and gene regulatory networks. We take a preliminary look at neural network architectures that may better suit biological classification tasks, explore how learning fits into this paradigm, and address the role of competitive binding in cellular computation. Altogether, we envision a new research direction at the intersection of systems and synthetic biology, advancing our understanding of the inherent computational capacities of signalling pathways and gene regulatory networks.
在粗略层面上,细胞内的模式识别涉及表面受体对环境信号的感知,并激活下游信号通路,这些通路最终驱动转录组反应,实现诸如分化、迁移、增殖、凋亡或细胞类型特化等生物学功能。这种决策过程类似于一个分类任务,受机器学习概念启发,可根据决策边界来理解:相对于由该边界定义的分类区域的输入组合定义了上下文特定的反应。在本报告中,我们将机器学习概念置于生物学框架中,以探索人工神经网络、信号通路和基因调控网络之间的结构和功能相似性(及差异)。我们初步审视可能更适合生物学分类任务的神经网络架构,探讨学习如何融入这一范式,并阐述竞争性结合在细胞计算中的作用。总体而言,我们设想了一个系统生物学与合成生物学交叉的新研究方向,以增进我们对信号通路和基因调控网络固有计算能力的理解。