Suppr超能文献

脓毒症再审视:通过基于智能体模型的高性能计算实现来识别用于行为景观表征的新指标。

Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.

作者信息

Cockrell Chase, An Gary

机构信息

Department of Surgery, University of Chicago Medicine, 5841 South Maryland Ave, MC 5094, Chicago, IL 60637, USA.

出版信息

J Theor Biol. 2017 Oct 7;430:157-168. doi: 10.1016/j.jtbi.2017.07.016. Epub 2017 Jul 18.

Abstract

OBJECTIVES

Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation.

DESIGN

Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods.

RESULTS

The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we developed two novel methods for characterizing the behavior of a RDS: Probabilistic Basins of Attraction (PBoA) and Stochastic Trajectory Analysis (STA). Computationally generated behavioral landscapes demonstrated attractor structures around stochastic regions of behavior that could be described in a complementary fashion through use of PBoA and STA. The stochasticity of the boundaries of the attractors highlights the challenge for correlative attempts to characterize and classify clinical sepsis.

CONCLUSIONS

HPC simulations of models like the IIRABM can be used to generate approximations of the behavior space of sepsis to both establish "boundaries of futility" with respect to existing investigatory approaches and apply system engineering principles to investigate the general dynamic properties of sepsis to provide a pathway for developing control strategies. The issues that bedevil the study and treatment of sepsis, namely clinical data sparseness and inadequate experimental sampling of system behavior space, are fundamental to nearly all biomedical research, manifesting in the "Crisis of Reproducibility" at all levels. HPC-augmented simulation-based research offers an investigatory strategy more consistent with that seen in the physical sciences (which combine experiment, theory and simulation), and an opportunity to utilize the leading advances in HPC, namely deep machine learning and evolutionary computing, to form the basis of an iterative scientific process to meet the full promise of Precision Medicine (right drug, right patient, right time).

摘要

目标

脓毒症每年在美国影响近100万人,死亡率为28%-50%,每年的住院费用超过200亿美元。经过25年多的研究,尚未产生一种可靠的脓毒症诊断测试或定向治疗药物。造成这种不足的核心原因是,脓毒症仍然是一种临床/生理诊断,代表着多种分子异质性病理轨迹。高性能计算(HPC)平台提供的计算能力的进步,要求脓毒症研究有所发展,试图通过使用计算代理模型来界定传统研究(实验室、临床和计算)的边界。我们提出了一种新颖的研究和分析方法,该方法源自物理科学中HPC资源和模拟的使用方式,通过使用基于代理的全身炎症模型来识别临床脓毒症研究的认知边界条件。

设计

目前用于脓毒症的预测模型使用的是相关方法,这些方法受到患者异质性和数据稀疏性的限制。我们通过使用经过系统级验证的基于代理的脓毒症模型(先天免疫反应ABM,IIRBM)的HPC版本作为代理系统来解决这个问题,以确定脓毒症可能行为空间的边界条件。然后,我们应用从随机动力系统(RDS)研究中得出的高级分析方法,来识别表征系统行为的新方法,并深入了解传统研究方法的可处理性。

结果

通过在以下参数范围内进行扫描,对超过7000万例脓毒症患者进行长达90天的模拟,研究了IIRABM的行为空间:心肺代谢恢复力;微生物侵袭性;微生物产毒性;以及医院暴露程度。除了使用既定方法描述参数空间外,我们还开发了两种表征RDS行为的新方法:概率吸引盆(PBoA)和随机轨迹分析(STA)。通过计算生成的行为景观展示了围绕随机行为区域的吸引子结构,这些结构可以通过使用PBoA和STA以互补的方式进行描述。吸引子边界的随机性凸显了相关方法在表征和分类临床脓毒症方面面临的挑战。

结论

像IIRABM这样的模型的HPC模拟可用于生成脓毒症行为空间的近似值,既可以针对现有研究方法确定“无效边界”,又可以应用系统工程原理来研究脓毒症的一般动态特性,从而为制定控制策略提供途径。困扰脓毒症研究和治疗的问题,即临床数据稀疏和系统行为空间的实验采样不足,几乎是所有生物医学研究的根本问题,在各个层面都表现为“可重复性危机”。基于HPC增强模拟的研究提供了一种与物理科学中所见更一致的研究策略(将实验、理论和模拟相结合),并有机会利用HPC的前沿进展,即深度机器学习和进化计算,形成迭代科学过程的基础,以实现精准医学的全部潜力(正确的药物、正确的患者、正确的时间)。

相似文献

2
Examining the controllability of sepsis using genetic algorithms on an agent-based model of systemic inflammation.
PLoS Comput Biol. 2018 Feb 15;14(2):e1005876. doi: 10.1371/journal.pcbi.1005876. eCollection 2018 Feb.
6
Agent-Based Modeling of Systemic Inflammation: A Pathway Toward Controlling Sepsis.
Methods Mol Biol. 2021;2321:231-257. doi: 10.1007/978-1-0716-1488-4_20.
9
Deep Reinforcement Learning and Simulation as a Path Toward Precision Medicine.
J Comput Biol. 2019 Jun;26(6):597-604. doi: 10.1089/cmb.2018.0168. Epub 2019 Jan 25.
10
Personalized identification of differentially expressed pathways in pediatric sepsis.
Mol Med Rep. 2017 Oct;16(4):5085-5090. doi: 10.3892/mmr.2017.7217. Epub 2017 Aug 10.

引用本文的文献

1
Generating synthetic multidimensional molecular time series data for machine learning: considerations.
Front Syst Biol. 2023 Jul 25;3:1188009. doi: 10.3389/fsysb.2023.1188009. eCollection 2023.
2
Immune digital twins for complex human pathologies: applications, limitations, and challenges.
NPJ Syst Biol Appl. 2024 Nov 30;10(1):141. doi: 10.1038/s41540-024-00450-5.
4
6
Digital twin mathematical models suggest individualized hemorrhagic shock resuscitation strategies.
Commun Med (Lond). 2024 Jun 12;4(1):113. doi: 10.1038/s43856-024-00535-6.
8
Digital twins in medicine.
Nat Comput Sci. 2024 Mar;4(3):184-191. doi: 10.1038/s43588-024-00607-6. Epub 2024 Mar 26.
9
Embracing complexity in sepsis.
Crit Care. 2023 Mar 11;27(1):102. doi: 10.1186/s13054-023-04374-0.

本文引用的文献

1
The Timing of Early Antibiotics and Hospital Mortality in Sepsis.
Am J Respir Crit Care Med. 2017 Oct 1;196(7):856-863. doi: 10.1164/rccm.201609-1848OC.
2
Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature.
PLoS Biol. 2017 Mar 2;15(3):e2000797. doi: 10.1371/journal.pbio.2000797. eCollection 2017 Mar.
3
Could a Neuroscientist Understand a Microprocessor?
PLoS Comput Biol. 2017 Jan 12;13(1):e1005268. doi: 10.1371/journal.pcbi.1005268. eCollection 2017 Jan.
4
Solving Immunology?
Trends Immunol. 2017 Feb;38(2):116-127. doi: 10.1016/j.it.2016.11.006. Epub 2016 Dec 13.
5
Optimization and Control of Agent-Based Models in Biology: A Perspective.
Bull Math Biol. 2017 Jan;79(1):63-87. doi: 10.1007/s11538-016-0225-6. Epub 2016 Nov 8.
6
Precision Medicine for Critical Illness and Injury.
Crit Care Med. 2016 Sep;44(9):1635-8. doi: 10.1097/CCM.0000000000002028.
7
Signatures of Subacute Potentially Catastrophic Illness in the ICU: Model Development and Validation.
Crit Care Med. 2016 Sep;44(9):1639-48. doi: 10.1097/CCM.0000000000001738.
8
Comparison of Sepsis Screening Tools' Ability to Detect Sepsis Accurately.
Surg Infect (Larchmt). 2016 Oct;17(5):525-9. doi: 10.1089/sur.2015.069. Epub 2016 Jul 22.
10
1,500 scientists lift the lid on reproducibility.
Nature. 2016 May 26;533(7604):452-4. doi: 10.1038/533452a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验