Cockrell Chase, An Gary
Department of Surgery, University of Chicago Medicine, 5841 South Maryland Ave, MC 5094, Chicago, IL 60637, USA.
J Theor Biol. 2017 Oct 7;430:157-168. doi: 10.1016/j.jtbi.2017.07.016. Epub 2017 Jul 18.
Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation.
Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods.
The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we developed two novel methods for characterizing the behavior of a RDS: Probabilistic Basins of Attraction (PBoA) and Stochastic Trajectory Analysis (STA). Computationally generated behavioral landscapes demonstrated attractor structures around stochastic regions of behavior that could be described in a complementary fashion through use of PBoA and STA. The stochasticity of the boundaries of the attractors highlights the challenge for correlative attempts to characterize and classify clinical sepsis.
HPC simulations of models like the IIRABM can be used to generate approximations of the behavior space of sepsis to both establish "boundaries of futility" with respect to existing investigatory approaches and apply system engineering principles to investigate the general dynamic properties of sepsis to provide a pathway for developing control strategies. The issues that bedevil the study and treatment of sepsis, namely clinical data sparseness and inadequate experimental sampling of system behavior space, are fundamental to nearly all biomedical research, manifesting in the "Crisis of Reproducibility" at all levels. HPC-augmented simulation-based research offers an investigatory strategy more consistent with that seen in the physical sciences (which combine experiment, theory and simulation), and an opportunity to utilize the leading advances in HPC, namely deep machine learning and evolutionary computing, to form the basis of an iterative scientific process to meet the full promise of Precision Medicine (right drug, right patient, right time).
脓毒症每年在美国影响近100万人,死亡率为28%-50%,每年的住院费用超过200亿美元。经过25年多的研究,尚未产生一种可靠的脓毒症诊断测试或定向治疗药物。造成这种不足的核心原因是,脓毒症仍然是一种临床/生理诊断,代表着多种分子异质性病理轨迹。高性能计算(HPC)平台提供的计算能力的进步,要求脓毒症研究有所发展,试图通过使用计算代理模型来界定传统研究(实验室、临床和计算)的边界。我们提出了一种新颖的研究和分析方法,该方法源自物理科学中HPC资源和模拟的使用方式,通过使用基于代理的全身炎症模型来识别临床脓毒症研究的认知边界条件。
目前用于脓毒症的预测模型使用的是相关方法,这些方法受到患者异质性和数据稀疏性的限制。我们通过使用经过系统级验证的基于代理的脓毒症模型(先天免疫反应ABM,IIRBM)的HPC版本作为代理系统来解决这个问题,以确定脓毒症可能行为空间的边界条件。然后,我们应用从随机动力系统(RDS)研究中得出的高级分析方法,来识别表征系统行为的新方法,并深入了解传统研究方法的可处理性。
通过在以下参数范围内进行扫描,对超过7000万例脓毒症患者进行长达90天的模拟,研究了IIRABM的行为空间:心肺代谢恢复力;微生物侵袭性;微生物产毒性;以及医院暴露程度。除了使用既定方法描述参数空间外,我们还开发了两种表征RDS行为的新方法:概率吸引盆(PBoA)和随机轨迹分析(STA)。通过计算生成的行为景观展示了围绕随机行为区域的吸引子结构,这些结构可以通过使用PBoA和STA以互补的方式进行描述。吸引子边界的随机性凸显了相关方法在表征和分类临床脓毒症方面面临的挑战。
像IIRABM这样的模型的HPC模拟可用于生成脓毒症行为空间的近似值,既可以针对现有研究方法确定“无效边界”,又可以应用系统工程原理来研究脓毒症的一般动态特性,从而为制定控制策略提供途径。困扰脓毒症研究和治疗的问题,即临床数据稀疏和系统行为空间的实验采样不足,几乎是所有生物医学研究的根本问题,在各个层面都表现为“可重复性危机”。基于HPC增强模拟的研究提供了一种与物理科学中所见更一致的研究策略(将实验、理论和模拟相结合),并有机会利用HPC的前沿进展,即深度机器学习和进化计算,形成迭代科学过程的基础,以实现精准医学的全部潜力(正确的药物、正确的患者、正确的时间)。