Suppr超能文献

重症监护病房中亚急性潜在灾难性疾病的特征:模型开发与验证

Signatures of Subacute Potentially Catastrophic Illness in the ICU: Model Development and Validation.

作者信息

Moss Travis J, Lake Douglas E, Calland J Forrest, Enfield Kyle B, Delos John B, Fairchild Karen D, Moorman J Randall

机构信息

1Division of Cardiovascular Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA.2Department of Statistics, University of Virginia, Charlottesville, VA.3Division of Acute Care and Trauma Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA.4Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA.5Department of Physics, College of William and Mary, Williamsburg, VA.6Division of Neonatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA.7Department of Biomedical Engineering, University of Virginia, Charlottesville, VA.8Department of Molecular Physiology, University of Virginia, Charlottesville, VA.

出版信息

Crit Care Med. 2016 Sep;44(9):1639-48. doi: 10.1097/CCM.0000000000001738.

Abstract

OBJECTIVES

Patients in ICUs are susceptible to subacute potentially catastrophic illnesses such as respiratory failure, sepsis, and hemorrhage that present as severe derangements of vital signs. More subtle physiologic signatures may be present before clinical deterioration, when treatment might be more effective. We performed multivariate statistical analyses of bedside physiologic monitoring data to identify such early subclinical signatures of incipient life-threatening illness.

DESIGN

We report a study of model development and validation of a retrospective observational cohort using resampling (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis type 1b internal validation) and a study of model validation using separate data (type 2b internal/external validation).

SETTING

University of Virginia Health System (Charlottesville), a tertiary-care, academic medical center.

PATIENTS

Critically ill patients consecutively admitted between January 2009 and June 2015 to either the neonatal, surgical/trauma/burn, or medical ICUs with available physiologic monitoring data.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

We analyzed 146 patient-years of vital sign and electrocardiography waveform time series from the bedside monitors of 9,232 ICU admissions. Calculations from 30-minute windows of the physiologic monitoring data were made every 15 minutes. Clinicians identified 1,206 episodes of respiratory failure leading to urgent unplanned intubation, sepsis, or hemorrhage leading to multi-unit transfusions from systematic individual chart reviews. Multivariate models to predict events up to 24 hours prior had internally validated C-statistics of 0.61-0.88. In adults, physiologic signatures of respiratory failure and hemorrhage were distinct from each other but externally consistent across ICUs. Sepsis, on the other hand, demonstrated less distinct and inconsistent signatures. Physiologic signatures of all neonatal illnesses were similar.

CONCLUSIONS

Subacute potentially catastrophic illnesses in three diverse ICU populations have physiologic signatures that are detectable in the hours preceding clinical detection and intervention. Detection of such signatures can draw attention to patients at highest risk, potentially enabling earlier intervention and better outcomes.

摘要

目的

重症监护病房(ICU)的患者易患亚急性潜在灾难性疾病,如呼吸衰竭、脓毒症和出血,这些疾病表现为生命体征严重紊乱。在临床恶化之前可能会出现更细微的生理特征,此时进行治疗可能会更有效。我们对床边生理监测数据进行了多变量统计分析,以识别早期危及生命疾病的此类亚临床特征。

设计

我们报告了一项使用重采样进行回顾性观察队列模型开发和验证的研究(个体预后或诊断多变量预测模型的透明报告类型1b内部验证)以及一项使用单独数据进行模型验证的研究(类型2b内部/外部验证)。

地点

弗吉尼亚大学健康系统(夏洛茨维尔),一家三级医疗学术医学中心。

患者

2009年1月至2015年6月期间连续入住新生儿、外科/创伤/烧伤或内科ICU且有可用生理监测数据的重症患者。

干预措施

无。

测量与主要结果

我们分析了9232例ICU入院患者床边监测仪记录的146患者年生命体征和心电图波形时间序列。每15分钟对生理监测数据的30分钟窗口进行一次计算。临床医生通过系统的个体病历审查确定了1206例导致紧急非计划插管的呼吸衰竭发作、脓毒症或导致多单位输血的出血发作。预测未来24小时内事件的多变量模型内部验证的C统计量为0.61 - 0.88。在成人中,呼吸衰竭和出血的生理特征彼此不同,但在各ICU之间外部一致。另一方面,脓毒症表现出不太明显且不一致的特征。所有新生儿疾病的生理特征相似。

结论

三种不同ICU人群中的亚急性潜在灾难性疾病具有在临床检测和干预前数小时可检测到的生理特征。检测到这些特征可以引起对高危患者的关注,有可能实现更早的干预并改善预后。

相似文献

2
Pathophysiologic Signatures of Bloodstream Infection in Critically Ill Adults.重症成年患者血流感染的病理生理特征
Crit Care Explor. 2020 Sep 23;2(10):e0191. doi: 10.1097/CCE.0000000000000191. eCollection 2020 Oct.
8
Heart rate dynamics preceding hemorrhage in the intensive care unit.重症监护病房内出血前的心率动态变化。
J Electrocardiol. 2015 Nov-Dec;48(6):1075-80. doi: 10.1016/j.jelectrocard.2015.08.007. Epub 2015 Aug 4.

引用本文的文献

本文引用的文献

2
Heart rate dynamics preceding hemorrhage in the intensive care unit.重症监护病房内出血前的心率动态变化。
J Electrocardiol. 2015 Nov-Dec;48(6):1075-80. doi: 10.1016/j.jelectrocard.2015.08.007. Epub 2015 Aug 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验