Suppr超能文献

表观遗传可塑性与癌症特征

Epigenetic plasticity and the hallmarks of cancer.

作者信息

Flavahan William A, Gaskell Elizabeth, Bernstein Bradley E

机构信息

Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, and Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

出版信息

Science. 2017 Jul 21;357(6348). doi: 10.1126/science.aal2380.

Abstract

Chromatin and associated epigenetic mechanisms stabilize gene expression and cellular states while also facilitating appropriate responses to developmental or environmental cues. Genetic, environmental, or metabolic insults can induce overly restrictive or overly permissive epigenetic landscapes that contribute to pathogenesis of cancer and other diseases. Restrictive chromatin states may prevent appropriate induction of tumor suppressor programs or block differentiation. By contrast, permissive or "plastic" states may allow stochastic oncogene activation or nonphysiologic cell fate transitions. Whereas many stochastic events will be inconsequential "passengers," some will confer a fitness advantage to a cell and be selected as "drivers." We review the broad roles played by epigenetic aberrations in tumor initiation and evolution and their potential to give rise to all classic hallmarks of cancer.

摘要

染色质及相关的表观遗传机制稳定基因表达和细胞状态,同时也促进对发育或环境信号的适当反应。遗传、环境或代谢损伤可诱导过度受限或过度宽松的表观遗传格局,这有助于癌症和其他疾病的发病机制。受限的染色质状态可能会阻止肿瘤抑制程序的适当诱导或阻断分化。相比之下,宽松或“可塑性”状态可能会允许随机的癌基因激活或非生理性的细胞命运转变。虽然许多随机事件将是无关紧要的“乘客”,但有些将赋予细胞适应性优势并被选为“驱动因素”。我们综述了表观遗传异常在肿瘤起始和演变中所起的广泛作用及其产生癌症所有经典特征的潜力。

相似文献

1
Epigenetic plasticity and the hallmarks of cancer.
Science. 2017 Jul 21;357(6348). doi: 10.1126/science.aal2380.
2
Epigenetic plasticity, selection, and tumorigenesis.
Biochem Soc Trans. 2020 Aug 28;48(4):1609-1621. doi: 10.1042/BST20191215.
3
Epigenetic aberrations and cancer.
Mol Cancer. 2006 Nov 8;5:60. doi: 10.1186/1476-4598-5-60.
5
Altered primary chromatin structures and their implications in cancer development.
Cell Oncol (Dordr). 2016 Jun;39(3):195-210. doi: 10.1007/s13402-016-0276-6. Epub 2016 Mar 23.
6
Cancer epigenetics: Past, present and future.
Semin Cancer Biol. 2022 Aug;83:4-14. doi: 10.1016/j.semcancer.2021.03.025. Epub 2021 Mar 31.
7
Epigenetic changes in cancer.
APMIS. 2007 Oct;115(10):1039-59. doi: 10.1111/j.1600-0463.2007.apm_636.xml.x.
8
Epigenetic drivers and genetic passengers on the road to cancer.
Mutat Res. 2008 Jul 3;642(1-2):1-13. doi: 10.1016/j.mrfmmm.2008.03.002. Epub 2008 Mar 25.
9
Replication stress, a source of epigenetic aberrations in cancer?
Bioessays. 2010 Oct;32(10):847-55. doi: 10.1002/bies.201000055. Epub 2010 Aug 19.
10
Keeping your options open: insights from Dppa2/4 into how epigenetic priming factors promote cell plasticity.
Biochem Soc Trans. 2020 Dec 18;48(6):2891-2902. doi: 10.1042/BST20200873.

引用本文的文献

1
Mutual Antagonism Between PRC1 Condensates and SWI/SNF in Chromatin Regulation.
bioRxiv. 2025 Aug 26:2025.08.25.672128. doi: 10.1101/2025.08.25.672128.
3
Integration of multi-omics approaches in exploring intra-tumoral heterogeneity.
Cancer Cell Int. 2025 Aug 29;25(1):317. doi: 10.1186/s12935-025-03944-2.
5
Optimal dosing of anti-cancer treatment under drug-induced plasticity.
NPJ Syst Biol Appl. 2025 Aug 25;11(1):98. doi: 10.1038/s41540-025-00571-5.
6
Persistent lineage plasticity driving lung cancer development and progression.
Clin Transl Med. 2025 Aug;15(8):e70458. doi: 10.1002/ctm2.70458.
7
The Roles of Lactate and Lactylation in Diseases Related to Mitochondrial Dysfunction.
Int J Mol Sci. 2025 Jul 24;26(15):7149. doi: 10.3390/ijms26157149.
8
Multiomics Signature Reveals Network Regulatory Mechanisms in a CRC Continuum.
Int J Mol Sci. 2025 Jul 23;26(15):7077. doi: 10.3390/ijms26157077.
10
Metabolism and epigenetics in cancer: toward personalized treatment.
Front Endocrinol (Lausanne). 2025 Jul 25;16:1530578. doi: 10.3389/fendo.2025.1530578. eCollection 2025.

本文引用的文献

1
H3K4 Methylation-Dependent Memory of Somatic Cell Identity Inhibits Reprogramming and Development of Nuclear Transfer Embryos.
Cell Stem Cell. 2017 Jul 6;21(1):135-143.e6. doi: 10.1016/j.stem.2017.03.003. Epub 2017 Mar 30.
2
Aging increases cell-to-cell transcriptional variability upon immune stimulation.
Science. 2017 Mar 31;355(6332):1433-1436. doi: 10.1126/science.aah4115.
3
CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic.
Oncogene. 2017 Jul 20;36(29):4100-4110. doi: 10.1038/onc.2017.25. Epub 2017 Mar 20.
4
Metabolic Inputs into the Epigenome.
Cell Metab. 2017 Mar 7;25(3):544-558. doi: 10.1016/j.cmet.2017.02.003.
5
Tumor evolution: Linear, branching, neutral or punctuated?
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):151-161. doi: 10.1016/j.bbcan.2017.01.003. Epub 2017 Jan 19.
6
Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance.
Cell Stem Cell. 2017 Feb 2;20(2):233-246.e7. doi: 10.1016/j.stem.2016.11.003. Epub 2016 Dec 15.
7
Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas.
Sci Transl Med. 2016 Nov 23;8(366):366ra161. doi: 10.1126/scitranslmed.aah6904.
8
Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control.
Cell. 2016 Nov 17;167(5):1188-1200. doi: 10.1016/j.cell.2016.10.024.
9
Diet, microorganisms and their metabolites, and colon cancer.
Nat Rev Gastroenterol Hepatol. 2016 Dec;13(12):691-706. doi: 10.1038/nrgastro.2016.165. Epub 2016 Nov 16.
10
DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling.
Nat Med. 2016 Dec;22(12):1488-1495. doi: 10.1038/nm.4210. Epub 2016 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验