Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
Biotechnol J. 2017 Sep;12(9). doi: 10.1002/biot.201700199. Epub 2017 Aug 10.
Biologically fixation of CO has great potential as a significant carbon source for biosynthesis, which is also a major way to reduce CO accumulation in atmosphere. Phosphoenolpyruvate (PEP) carboxylation is the key step of anaerobic succinate production in Escherichia coli. In this reaction, one mole CO is assimilated with PEP to form oxaloacetate by PEP carboxykinase (PCK). The preferred substrate of PCK is CO , which is very limited in cytoplasm. In this study, the carbon concentration mechanism (CCM) of cyanobacteria was introduced into Escherichia coli to enhance the intracellular inorganic carbon concentration for improving carboxylation velocity. Overexpression of the bicarbonate transporter (BT) or carbonic anhydrase (CA) gene from Synechococcus sp. PCC7002 led to a 22 or 35% increase in succinate titer at 36 h, respectively. The carboxylation rate of PCK increased from 2.46 to 3.92 µmol min mg protein by overexpression of the CA gene. In addition, co-overexpression of BT and CA genes had a synergetic effect, leading to a 44% increase in succinate titer at 36 h. This work is the first attempt to increase carbon fixation involved in microbial biosynthesis by engineering a biological CO delivery system, which provides new direction and strategies for improving industrial fermentations based on biological CO assimilation pathways.
将 CO 进行生物固定作为生物合成的重要碳源具有很大的潜力,这也是减少大气中 CO 积累的主要途径。磷酸烯醇丙酮酸(PEP)羧化是大肠杆菌中厌氧琥珀酸生产的关键步骤。在该反应中,一分子 CO 通过 PEP 羧激酶(PCK)与 PEP 同化形成草酰乙酸。PCK 的首选底物是 CO ,而 CO 在细胞质中非常有限。在本研究中,将蓝藻的碳浓缩机制(CCM)引入大肠杆菌中,以提高细胞内无机碳浓度,从而提高羧化速度。过表达来自集胞藻 sp. PCC7002 的碳酸氢盐转运蛋白(BT)或碳酸酐酶(CA)基因分别使琥珀酸产量在 36 小时时增加了 22%或 35%。通过过表达 CA 基因,PCK 的羧化速率从 2.46µmol min-1 mg 蛋白增加到 3.92µmol min-1 mg 蛋白。此外,BT 和 CA 基因的共过表达具有协同作用,使琥珀酸产量在 36 小时时增加了 44%。这项工作首次尝试通过工程化生物 CO 输送系统来增加参与微生物生物合成的碳固定,为基于生物 CO 同化途径的工业发酵提供了新的方向和策略。