Suppr超能文献

力量与体能训练中的技术:使用可穿戴传感器评估自重深蹲技术。

Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors.

作者信息

OʼReilly Martin A, Whelan Darragh F, Ward Tomas E, Delahunt Eamonn, Caulfield Brian M

机构信息

1Insight Center for Data Analytics, University College Dublin, Dublin, Republic of Ireland; 2School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland; and 3Insight Center for Data Analytics, Maynooth University, Maynooth, Republic of Ireland.

出版信息

J Strength Cond Res. 2017 Aug;31(8):2303-2312. doi: 10.1519/JSC.0000000000001957.

Abstract

O'Reilly, MA, Whelan, DF, Ward, TE, Delahunt, E, and Caulfield, BM. Technology in strength and conditioning: assessing bodyweight squat technique with wearable sensors. J Strength Cond Res 31(8): 2303-2312, 2017-Strength and conditioning (S&C) coaches offer expert guidance to help those they work with achieve their personal fitness goals. However, it is not always practical to operate under the direct supervision of an S&C coach and consequently individuals are often left training without expert oversight. Recent developments in inertial measurement units (IMUs) and mobile computing platforms have allowed for the possibility of unobtrusive motion tracking systems and the provision of real-time individualized feedback regarding exercise performance. These systems could enable S&C coaches to remotely monitor sessions and help individuals record their workout performance. One aspect of such technologies is the ability to assess exercise technique and detect common deviations from acceptable exercise form. In this study, we investigate this ability in the context of a bodyweight (BW) squat exercise. Inertial measurement units were positioned on the lumbar spine, thighs, and shanks of 77 healthy participants. Participants completed repetitions of BW squats with acceptable form and 5 common deviations from acceptable BW squatting technique. Descriptive features were extracted from the IMU signals for each BW squat repetition, and these were used to train a technique classifier. Acceptable or aberrant BW squat technique can be detected with 98% accuracy, 96% sensitivity, and 99% specificity when using features derived from all 5 IMUs. A single IMU system can also distinguish between acceptable and aberrant BW squat biomechanics with excellent accuracy, sensitivity, and specificity. Detecting exact deviations from acceptable BW squatting technique can be achieved with 80% accuracy using a 5 IMU system and 72% accuracy when using a single IMU positioned on the right shank. These results suggest that IMU-based systems can distinguish between acceptable and aberrant BW squat technique with excellent accuracy with a single IMU system. Identification of exact deviations is also possible but multi-IMU systems outperform single IMU systems.

摘要

奥赖利,医学硕士,惠兰,理学硕士,沃德,理学硕士,德拉亨特,理学硕士,考尔菲尔德,理学硕士。力量与体能训练中的技术:使用可穿戴传感器评估自重深蹲技术。《力量与体能训练研究杂志》31(8): 2303 - 2312, 2017年——力量与体能训练(S&C)教练提供专业指导,以帮助他们所指导的人实现个人健身目标。然而,在S&C教练的直接监督下进行训练并不总是可行的,因此个人在训练时常常缺乏专家监督。惯性测量单元(IMU)和移动计算平台的最新发展使得无干扰运动跟踪系统以及提供关于运动表现的实时个性化反馈成为可能。这些系统可以使S&C教练远程监控训练课程,并帮助个人记录他们的训练表现。此类技术的一个方面是评估运动技术并检测与可接受运动形式的常见偏差的能力。在本研究中,我们在自重(BW)深蹲练习的背景下研究了这种能力。将惯性测量单元放置在77名健康参与者的腰椎、大腿和小腿上。参与者以可接受的形式完成自重深蹲重复动作,并出现5种与可接受的自重深蹲技术的常见偏差。从每个自重深蹲重复动作的IMU信号中提取描述性特征,并将其用于训练技术分类器。当使用来自所有5个IMU的特征时,可接受或异常的自重深蹲技术能够以98%的准确率、96%的灵敏度和99%的特异性被检测出来。单个IMU系统也能够以出色的准确率、灵敏度和特异性区分可接受和异常的自重深蹲生物力学。使用5个IMU系统时,检测与可接受的自重深蹲技术的确切偏差的准确率可达80%,而使用位于右小腿上的单个IMU时,准确率为72%。这些结果表明,基于IMU的系统使用单个IMU系统就能以出色的准确率区分可接受和异常的自重深蹲技术。确定确切偏差也是可能的,但多IMU系统的表现优于单IMU系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验