Suppr超能文献

使用可穿戴惯性测量单元对硬拉生物力学进行分类。

Classification of deadlift biomechanics with wearable inertial measurement units.

作者信息

O'Reilly Martin A, Whelan Darragh F, Ward Tomas E, Delahunt Eamonn, Caulfield Brian M

机构信息

Insight Centre for Data Analytics, University College Dublin, Ireland; School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland.

Insight Centre for Data Analytics, University College Dublin, Ireland; School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland.

出版信息

J Biomech. 2017 Jun 14;58:155-161. doi: 10.1016/j.jbiomech.2017.04.028. Epub 2017 May 16.

Abstract

The deadlift is a compound full-body exercise that is fundamental in resistance training, rehabilitation programs and powerlifting competitions. Accurate quantification of deadlift biomechanics is important to reduce the risk of injury and ensure training and rehabilitation goals are achieved. This study sought to develop and evaluate deadlift exercise technique classification systems utilising Inertial Measurement Units (IMUs), recording at 51.2Hz, worn on the lumbar spine, both thighs and both shanks. It also sought to compare classification quality when these IMUs are worn in combination and in isolation. Two datasets of IMU deadlift data were collected. Eighty participants first completed deadlifts with acceptable technique and 5 distinct, deliberately induced deviations from acceptable form. Fifty-five members of this group also completed a fatiguing protocol (3-Repition Maximum test) to enable the collection of natural deadlift deviations. For both datasets, universal and personalised random-forests classifiers were developed and evaluated. Personalised classifiers outperformed universal classifiers in accuracy, sensitivity and specificity in the binary classification of acceptable or aberrant technique and in the multi-label classification of specific deadlift deviations. Whilst recent research has favoured universal classifiers due to the reduced overhead in setting them up for new system users, this work demonstrates that such techniques may not be appropriate for classifying deadlift technique due to the poor accuracy achieved. However, personalised classifiers perform very well in assessing deadlift technique, even when using data derived from a single lumbar-worn IMU to detect specific naturally occurring technique mistakes.

摘要

硬拉是一种全身性复合运动,在阻力训练、康复计划和力量举比赛中至关重要。准确量化硬拉生物力学对于降低受伤风险以及确保实现训练和康复目标非常重要。本研究旨在开发和评估利用惯性测量单元(IMU)的硬拉运动技术分类系统,这些IMU以51.2Hz的频率记录,佩戴在腰椎、双侧大腿和双侧小腿上。研究还旨在比较这些IMU组合佩戴和单独佩戴时的分类质量。收集了两个IMU硬拉数据集。80名参与者首先以可接受的技术完成硬拉,并故意做出5种与可接受姿势不同的明显偏差。该组中的55名成员还完成了疲劳方案(3次重复最大值测试),以收集自然的硬拉偏差。对于这两个数据集,开发并评估了通用和个性化的随机森林分类器。在可接受或异常技术的二元分类以及特定硬拉偏差的多标签分类中,个性化分类器在准确性、敏感性和特异性方面均优于通用分类器。虽然最近的研究由于为新系统用户设置通用分类器的开销较小而倾向于使用它们,但这项工作表明,由于获得的准确性较差,此类技术可能不适用于对硬拉技术进行分类。然而,即使使用从单个腰部佩戴的IMU获得的数据来检测特定的自然发生的技术错误,个性化分类器在评估硬拉技术方面也表现得非常出色。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验