Suppr超能文献

巨细胞病毒载体对 CD8+ T 细胞的编程:在预防性和治疗性疫苗接种中的应用。

CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination.

机构信息

Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, United States.

出版信息

Curr Opin Immunol. 2017 Aug;47:52-56. doi: 10.1016/j.coi.2017.06.010. Epub 2017 Jul 19.

Abstract

Vectors based on cytomegalovirus (CMV) represent a novel vaccine platform that maintains high frequencies of non-exhausted effector memory T cells in both CMV sero-positive and sero-negative individuals. In non-human primate models, CMV vectored vaccines provide unprecedented protection against simian immunodeficiency virus (SIV). Moreover, CMV vectors can be genetically altered to program highly diverse CD8+ T cell responses that differ in their epitope targeting including conventional, MHC-I restricted CD8+ T cells as well as unconventional CD8+ T cells restricted by MHC class II or non-polymorphic MHC-E. By modifying cytomegaloviral determinants that control unconventional T cell priming it is possible to uniquely tailor the CD8+ T cell response for each individual disease target in order to maximize prophylactic or therapeutic protection.

摘要

基于巨细胞病毒(CMV)的载体代表了一种新型疫苗平台,可在 CMV 血清阳性和血清阴性个体中维持高频率的非耗竭效应记忆 T 细胞。在非人类灵长类动物模型中,CMV 载体疫苗可提供针对猴免疫缺陷病毒(SIV)的前所未有的保护。此外,CMV 载体可以进行遗传修饰,以编程高度多样化的 CD8+T 细胞反应,这些反应在其表位靶向方面存在差异,包括传统的、受 MHC-I 限制的 CD8+T 细胞以及受 MHC 类 II 或非多态性 MHC-E 限制的非常规 CD8+T 细胞。通过修饰控制非常规 T 细胞启动的巨细胞病毒决定簇,可以针对每个个体疾病靶标独特地定制 CD8+T 细胞反应,以最大程度地提高预防或治疗保护。

相似文献

1
CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination.
Curr Opin Immunol. 2017 Aug;47:52-56. doi: 10.1016/j.coi.2017.06.010. Epub 2017 Jul 19.
2
Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms.
Science. 2013 May 24;340(6135):1237874. doi: 10.1126/science.1237874.
3
Promising Cytomegalovirus-Based Vaccine Vector Induces Robust CD8 T-Cell Response.
Int J Mol Sci. 2019 Sep 10;20(18):4457. doi: 10.3390/ijms20184457.
5
Immune Protection by a Cytomegalovirus Vaccine Vector Expressing a Single Low-Avidity Epitope.
J Immunol. 2017 Sep 1;199(5):1737-1747. doi: 10.4049/jimmunol.1602115. Epub 2017 Aug 2.
6
HLA-E: exploiting pathogen-host interactions for vaccine development.
Clin Exp Immunol. 2019 May;196(2):167-177. doi: 10.1111/cei.13292. Epub 2019 Apr 9.
9
Programming cytomegalovirus as an HIV vaccine.
Trends Immunol. 2023 Apr;44(4):287-304. doi: 10.1016/j.it.2023.02.001. Epub 2023 Mar 7.

引用本文的文献

2
Targeting MHC-E as a new strategy for vaccines and immunotherapeutics.
Nat Rev Immunol. 2025 Sep 3. doi: 10.1038/s41577-025-01218-6.
3
Porcine Reproductive and Respiratory Syndrome Virus: Challenges and Advances in Vaccine Development.
Vaccines (Basel). 2025 Feb 28;13(3):260. doi: 10.3390/vaccines13030260.
4
Oncolytic cytomegaloviruses expressing EGFR-retargeted fusogenic glycoprotein complex and drug-controllable interleukin 12.
Cell Rep Med. 2025 Jan 21;6(1):101874. doi: 10.1016/j.xcrm.2024.101874. Epub 2024 Dec 17.
5
Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8 T cells.
Sci Immunol. 2024 Oct 11;9(100):eadp5216. doi: 10.1126/sciimmunol.adp5216.
6
Vaccine adjuvants for infectious disease in the clinic.
Bioeng Transl Med. 2024 Mar 22;9(4):e10663. doi: 10.1002/btm2.10663. eCollection 2024 Jul.
7
CD8 T cell targeting of tumor antigens presented by HLA-E.
Sci Adv. 2024 May 10;10(19):eadm7515. doi: 10.1126/sciadv.adm7515.
8
Oncolytic α-herpesvirus and myeloid-tropic cytomegalovirus cooperatively enhance systemic antitumor responses.
Mol Ther. 2024 Jan 3;32(1):241-256. doi: 10.1016/j.ymthe.2023.11.003. Epub 2023 Nov 4.
9
Exploring the Potential of Cytomegalovirus-Based Vectors: A Review.
Viruses. 2023 Oct 2;15(10):2043. doi: 10.3390/v15102043.

本文引用的文献

1
Fibroblast-adapted human CMV vaccines elicit predominantly conventional CD8 T cell responses in humans.
J Exp Med. 2017 Jul 3;214(7):1889-1899. doi: 10.1084/jem.20161988. Epub 2017 May 31.
3
A replication-defective human cytomegalovirus vaccine for prevention of congenital infection.
Sci Transl Med. 2016 Oct 26;8(362):362ra145. doi: 10.1126/scitranslmed.aaf9387.
4
Malaria: Biology and Disease.
Cell. 2016 Oct 20;167(3):610-624. doi: 10.1016/j.cell.2016.07.055.
6
Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases.
J Immunol Res. 2016;2016:2695396. doi: 10.1155/2016/2695396. Epub 2016 Sep 6.
7
Approaches to the induction of HIV broadly neutralizing antibodies.
Curr Opin HIV AIDS. 2016 Nov;11(6):569-575. doi: 10.1097/COH.0000000000000317.
8
A Phase 1 Study of 4 Live, Recombinant Human Cytomegalovirus Towne/Toledo Chimera Vaccines in Cytomegalovirus-Seronegative Men.
J Infect Dis. 2016 Nov 1;214(9):1341-1348. doi: 10.1093/infdis/jiw365. Epub 2016 Aug 11.
9
The comings and goings of MHC class I molecules herald a new dawn in cross-presentation.
Immunol Rev. 2016 Jul;272(1):65-79. doi: 10.1111/imr.12428.
10
New concepts in HIV-1 vaccine development.
Curr Opin Immunol. 2016 Aug;41:39-46. doi: 10.1016/j.coi.2016.05.011. Epub 2016 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验