Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.
School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
Nat Plants. 2022 Jan;8(1):78-91. doi: 10.1038/s41477-021-01042-5. Epub 2021 Dec 23.
Photosynthesis-related pathways are regarded as a promising avenue for crop improvement. Whilst empirical studies have shown that photosynthetic efficiency is higher in microalgae than in C or C crops, the underlying reasons remain unclear. Using a tailor-made microfluidics labelling system to supply CO at steady state, we investigated in vivo labelling kinetics in intermediates of the Calvin Benson cycle and sugar, starch, organic acid and amino acid synthesis pathways, and in protein and lipids, in Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii, which is the fastest growing green alga on record. We estimated flux patterns in these algae and compared them with published and new data from C and C plants. Our analyses identify distinct flux patterns supporting faster growth in photosynthetic cells, with some of the algae exhibiting faster ribulose 1,5-bisphosphate regeneration and increased fluxes through the lower glycolysis and anaplerotic pathways towards the tricarboxylic acid cycle, amino acid synthesis and lipid synthesis than in higher plants.
光合作用相关途径被认为是改良作物的有前途的途径。虽然实证研究表明,微藻的光合作用效率高于 C 或 C 作物,但背后的原因仍不清楚。本研究使用定制的微流控标记系统在稳定状态下供应 CO,我们研究了莱茵衣藻、盐藻和最快生长的绿藻眼子菜中的卡尔文-本森循环中间产物、糖、淀粉、有机酸和氨基酸合成途径以及蛋白质和脂质的体内标记动力学,并与已发表的和来自 C 和 C 植物的新数据进行了比较。我们的分析确定了支持光合作用细胞更快生长的不同通量模式,一些藻类表现出更快的核酮糖 1,5-二磷酸再生,以及通过较低的糖酵解和补料途径向三羧酸循环、氨基酸合成和脂质合成的通量增加,这比高等植物更为明显。