Suppr超能文献

一系列具有时滞和季节性的美国白蛾种群模型。

A series of population models for Hyphantria cunea with delay and seasonality.

作者信息

Lu Haixia, Song Haitao, Zhu Huaiping

机构信息

School of Arts and Science, Suqian College, Suqian, Jiangsu, 223800, PR China; Laboratory of Mathematical Parallel Systems (Lamps), Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada.

Laboratory of Mathematical Parallel Systems (Lamps), Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada; Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi, 030006, PR China.

出版信息

Math Biosci. 2017 Oct;292:57-66. doi: 10.1016/j.mbs.2017.07.010. Epub 2017 Jul 19.

Abstract

In this paper, we establish and study a basic stage-structured model for the population of Hyphantria cunea, a delay differential equation model and a model incorporating the resource and seasonality. By introducing the population reproduction number R, we show that R acts as a threshold parameter for the existence and stability of equilibria. The trivial equilibria of the above models are all globally asymptotically stable when R<1; the basic model and the delay-differential model have a unique positive equilibrium respectively, and they are both locally asymptotically stable when R>1; the model with periodic season is uniformly persistent and admits a positive periodic solution if R>1. Numerical simulations are carried out to illustrate the theoretical results. In addition, we consider the effect of temperature and season on the population of Hyphantria cunea.

摘要

在本文中,我们建立并研究了美国白蛾种群的一个基本阶段结构模型、一个时滞微分方程模型以及一个包含资源和季节性的模型。通过引入种群繁殖数(R),我们表明(R)作为平衡点存在性和稳定性的阈值参数。当(R\lt1)时,上述模型的平凡平衡点都是全局渐近稳定的;基本模型和时滞微分模型分别有唯一的正平衡点,当(R\gt1)时它们都是局部渐近稳定的;具有周期性季节的模型如果(R\gt1)则是一致持久的并且存在一个正周期解。进行了数值模拟以说明理论结果。此外,我们考虑了温度和季节对美国白蛾种群的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验