Department of Mathematics, Xi'an Jiaotong University, Xi'an 710049, China.
Bull Math Biol. 2010 May;72(4):931-52. doi: 10.1007/s11538-009-9477-8. Epub 2010 Jan 9.
The statistical data of tuberculosis (TB) cases show seasonal fluctuations in many countries. A TB model incorporating seasonality is developed and the basic reproduction ratio R(0) is defined. It is shown that the disease-free equilibrium is globally asymptotically stable and the disease eventually disappears if R(0)<1, and there exists at least one positive periodic solution and the disease is uniformly persistent if R(0)>1. Numerical simulations indicate that there may be a unique positive periodic solution which is globally asymptotically stable if R(0)>1. Parameter values of the model are estimated according to demographic and epidemiological data in China. The simulation results are in good accordance with the seasonal variation of the reported cases of active TB in China.
结核病(TB)病例的统计数据显示,许多国家的病例都存在季节性波动。本文建立了一个包含季节性因素的结核病模型,并定义了基本再生数 R(0)。结果表明,无病平衡点全局渐近稳定,如果 R(0)<1,疾病最终会消失;如果 R(0)>1,则至少存在一个正周期解,疾病呈一致持续状态。数值模拟表明,如果 R(0)>1,可能存在唯一的全局渐近稳定的正周期解。根据中国的人口统计学和流行病学数据对模型参数进行了估计。模拟结果与中国活动性结核病报告病例的季节性变化吻合良好。