Suppr超能文献

基于高分辨率磁共振成像的改进型自动视神经半径估计

Improved Automatic Optic Nerve Radius Estimation from High Resolution MRI.

作者信息

Harrigan Robert L, Smith Alex K, Mawn Louise A, Smith Seth A, Landman Bennett A

机构信息

Electrical Engineering, Vanderbilt University, Nashville, TN, USA 37235.

Biomedical Engineering, Vanderbilt University, Nashville, TN, USA 37235.

出版信息

Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10133. doi: 10.1117/12.2254370. Epub 2017 Feb 24.

Abstract

The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.

摘要

视神经(ON)是人类视觉系统中的一个重要结构,它将所有视觉信息从视网膜传输到皮层进行高级处理。由于视觉通路缺乏冗余,已证明视神经损伤的测量结果与视觉缺陷密切相关。这些测量通常在神经上任意一个解剖学定义的点进行,无法描述视神经全长的变化情况。我们基于之前独立的逐切片技术,提出了一种全自动、三维一致的技术,用于在高分辨率重T2加权各向同性磁共振成像(MRI)上估计视神经及其周围脑脊液(CSF)的半径。我们表明,通过将结果限制为三维一致,该技术能产生更符合解剖学实际的结果。我们使用一个短期重复性数据集(10名受试者,随访时间<1个月),将该技术与之前发表的逐切片技术进行比较,结果表明新方法在视神经中心更具重复性。视神经中心包含最准确的成像,因为它没有诸如运动和额叶干扰等混杂因素。我们还用这种新技术研究了长期重复性(5名受试者,随访约11个月),结果表明其与短期重复性相似,这表明视神经在11个月内没有显著变化。当在患者群体中寻找视神经大小的解剖学变化时,这种新技术提高的准确性提供了更强的检测能力。

相似文献

3
Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis.多发性硬化症患者视神经萎缩的定量特征
Mult Scler J Exp Transl Clin. 2017 Sep 13;3(3):2055217317730097. doi: 10.1177/2055217317730097. eCollection 2017 Jul-Sep.
8
Quantitative MRI evaluation of glaucomatous changes in the visual pathway.定量 MRI 评估视觉通路的青光眼改变。
PLoS One. 2018 Jul 9;13(7):e0197027. doi: 10.1371/journal.pone.0197027. eCollection 2018.
10
Exploring experimental autoimmune optic neuritis using multimodal imaging.探索实验性自身免疫性视神经炎的多模态成像。
Neuroimage. 2018 Jul 15;175:327-339. doi: 10.1016/j.neuroimage.2018.04.004. Epub 2018 Apr 6.

引用本文的文献

2
Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis.多发性硬化症患者视神经萎缩的定量特征
Mult Scler J Exp Transl Clin. 2017 Sep 13;3(3):2055217317730097. doi: 10.1177/2055217317730097. eCollection 2017 Jul-Sep.

本文引用的文献

1
Robust optic nerve segmentation on clinically acquired computed tomography.临床获取的计算机断层扫描上的稳健视神经分割
J Med Imaging (Bellingham). 2014 Oct;1(3):034006. doi: 10.1117/1.JMI.1.3.034006. Epub 2014 Dec 17.
7
Optic neuritis.视神经炎。
Lancet Neurol. 2014 Jan;13(1):83-99. doi: 10.1016/S1474-4422(13)70259-X.
9
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
10
PyXNAT: XNAT in Python.PyXNAT:Python 版 XNAT。
Front Neuroinform. 2012 May 24;6:12. doi: 10.3389/fninf.2012.00012. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验