Panda Swetasudha, Asman Andrew J, Khare Shweta P, Thompson Lindsey, Mawn Louise A, Smith Seth A, Landman Bennett A
Electrical Engineering, Vanderbilt University, Nashville, TN, USA 37235.
Computer Science, Vanderbilt University, Nashville, TN, USA 37235.
J Med Imaging (Bellingham). 2014 Jul 18;1(2). doi: 10.1117/1.JMI.1.2.024002.
Multi-atlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. We evaluate 7 statistical and voting-based label fusion algorithms (and 6 additional variants) to segment the optic nerves, eye globes and chiasm. For non-local STAPLE, we evaluate different intensity similarity measures (including mean square difference, locally normalized cross correlation, and a hybrid approach). Each algorithm is evaluated in terms of the Dice overlap and symmetric surface distance metrics. Finally, we evaluate refinement of label fusion results using a learning based correction method for consistent bias correction and Markov random field regularization. The multi-atlas labeling pipelines were evaluated on a cohort of 35 subjects including both healthy controls and patients. Across all three structures, NLSS with a mixed weighting type provided the most consistent results; for the optic nerve NLSS resulted in a median Dice similarity coefficient of 0.81, mean surface distance of 0.41 mm and Hausdorff distance 2.18 mm for the optic nerves. Joint label fusion resulted in slightly superior median performance for the optic nerves (0.82, 0.39 mm and 2.15 mm), but slightly worse on the globes. The fully automated multi-atlas labeling approach provides robust segmentations of orbital structures on MRI even in patients for whom significant atrophy (optic nerve head drusen) or inflammation (multiple sclerosis) is present.
多图谱方法在脑部分割方面已取得成功,但其在较小解剖结构上的应用仍相对未被探索。我们评估了7种基于统计和投票的标签融合算法(以及6种其他变体),用于对视神经、眼球和视交叉进行分割。对于非局部STAPLE,我们评估了不同的强度相似性度量(包括均方差、局部归一化互相关和一种混合方法)。每种算法都根据Dice重叠和对称表面距离度量进行评估。最后,我们使用基于学习的校正方法进行一致偏差校正和马尔可夫随机场正则化,来评估标签融合结果的细化。多图谱标记流程在包括健康对照和患者在内的35名受试者的队列上进行了评估。在所有这三种结构中,具有混合加权类型的NLSS提供了最一致的结果;对于视神经,NLSS导致视神经的Dice相似系数中位数为0.81,平均表面距离为0.41毫米,豪斯多夫距离为2.18毫米。联合标签融合对视神经的中位数性能略优(0.82、0.39毫米和2.15毫米),但在眼球上略差。即使在存在显著萎缩(视神经乳头玻璃疣)或炎症(多发性硬化症)的患者中,全自动多图谱标记方法也能在MRI上对视眶结构进行可靠的分割。